精英家教网 > 高中数学 > 题目详情

曲线f (x)= x3+x-2在P0点处的切线平行于直线y= 4x-1,则P0点的坐标为 (   )

       A.(1,0)                                             B.(2,8)

       C.(1,0)和(-1,-4)                     D.(2,8)和(-1,-4)

 

【答案】

C

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•潍坊一模)设函数f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx
,其中a≠0.
( I )若函数y=g(x)图象恒过定点P,且点P在y=f(x)的图象上,求m的值;
(Ⅱ)当a=8时,设F(x)=f′(x)+g(x),讨论F(x)的单调性;
(Ⅲ)在(I)的条件下,设G(x)=
f(x),x≤1
g(x),x>1
,曲线y=G(x)上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且该三角形斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:湖南省衡阳市八中2011届高三第二次月考文科数学试题 题型:013

曲线f(x)=x·1nx在点x=1处的切线方程为

[  ]
A.

y=2x-2

B.

y=2x+2

C.

y=x-1

D.

y=x+1

查看答案和解析>>

科目:高中数学 来源:潍坊一模 题型:解答题

设函数f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx
,其中a≠0.
( I )若函数y=g(x)图象恒过定点P,且点P在y=f(x)的图象上,求m的值;
(Ⅱ)当a=8时,设F(x)=f′(x)+g(x),讨论F(x)的单调性;
(Ⅲ)在(I)的条件下,设G(x)=
f(x),x≤1
g(x),x>1
,曲线y=G(x)上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且该三角形斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正弦曲线f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一部分图象如图所示.

(1)求函数f(x)的解析式;

(2)求证:x=1是y=f(x)的对称轴;

(3)求y=f(x)关于x=2对称的图象y=g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=xlnx.

(1)求函数f(x)的单调区间和最小值;

(2)当b>0时,求证:bb(其中e=2.718 28…是自然对数的底数);

(3)若a>0,b>0,证明f(a)+(a+b)ln2≥f(a+b)-f(b).

(文)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且mn,把其中x,y所满足的关系式记为y=f(x).若f′(x)为f(x)的导函数,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函数.

(1)求和c的值.

(2)求函数f(x)的单调递减区间(用字母a表示).

(3)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A与B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),并求S(t)的最大值.

查看答案和解析>>

同步练习册答案