精英家教网 > 高中数学 > 题目详情
已知正实数数列{an}的前n项和为Sn,4Sn=an2+2an-3对于一切n∈N*成立.
(I)求数列{an}的通项公式;
(II)设项和,求使Tn<c恒成立的最小正整数c.
【答案】分析:(I)先求出数列的首项,然后根据当n≥2时,4Sn=an2+2an-3,则4Sn-1=an-12+2an-1-3,作差化简可得正数列{an}是首项为3,公差为2的等差数列,从而可求出其通项公式;
(II)根据数列{}通项公式的特点可知利用错位相消法进行求和,从而可求出使Tn<c恒成立的最小正整数.
解答:(本小题满分13分)
解:(Ⅰ)当n=1时,4S1=a12+2a1-3=4a1,得a12-2a1-3=0,
a1=3或a1=-1,由条件an>0,所以a1=3.       …(2分)
当n≥2时,4Sn=an2+2an-3,则4Sn-1=an-12+2an-1-3
则4Sn-4Sn-1=an2+2an-3-(an-12+2an-1-3),
所以4an=an2+2an-an-12-2an-1,(an+an-1)(an-an-1-2)=0,…(4分)
由条件an+an-1>0,所以an-an-1=2,…(5分)
故正数列{an}是首项为3,公差为2的等差数列,所以an=2n+1.…(6分)
(Ⅱ)由(Ⅰ),…(7分)
∴Tn=+…+.…①
将上式两边同乘以,得Tn=+…+…②…(8分)
①-②,得∴Tn=++…+-=-
所以Tn=5-<5.…(10分)
又T1=,T2=,T3=,T4=>4.  …(11分)
若Tn=5-<c恒成立,
∴使Tn<c恒成立的最小正整数c是5. …(13分)
点评:本题主要考查了等差数列的通项公式,以及利用错位相消法进行求和,同时考查了数列与不等式的综合和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知正项数列{an},{bn}满足:对任意正整数n,都有an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=10,a2=15.
(Ⅰ)求证:数列{
b
n
}
是等差数列;
(Ⅱ)求数列{an},{bn}的通项公式;
(Ⅲ) 设Sn=
1
a1
+
1
a2
+…+
1
an
,如果对任意正整数n,不等式2aSn<2-
bn
an
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}满足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求证:数列{bn}为等比数列;
(2)记Tn为数列{
1
log2bn+1log2bn+2
}
的前n项和,是否存在实数a,使得不等式Tn<log0.5(a2-
1
2
a)
对?n∈N+恒成立?若存在,求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)已知正项数列{an}的首项a1=1,前n项和Sn满足an=
Sn
+
sn-1
(n≥2).
(Ⅰ)求证:{
Sn
}为等差数列,并求数列{an}的通项公式;
(Ⅱ)记数列{
1
anan+1
}的前n项和为Tn,若对任意的n∈N*,不等式4Tn<a2-a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武昌区模拟)已知正实数数列{an}的前n项和为Sn,4Sn=an2+2an-3对于一切n∈N*成立.
(I)求数列{an}的通项公式;
(II)设bn=
2an-1
Tn为数列{
an
bn
}的前n
项和,求使Tn<c恒成立的最小正整数c.

查看答案和解析>>

同步练习册答案