精英家教网 > 高中数学 > 题目详情
以下四个命题中:
①“若x2+y2≠0,则x,y全不为零”的否命题;
②若A、B、C三点不共线,对平面ABC外的任一点O,有
OM
=
1
3
AO
+
1
3
OB
+
1
3
OC
,则点M与点A、B、C共面;
③若双曲线
x2
9
-
y2
16
=1的两焦点为F1、F2,点P为双曲线上一点,且
PF1
PF2
=0,则△PF1F2的面积为16;
④曲线
x2
25
+
y2
9
=1与曲线
x2
9-k
+
y2
25-k
=1(0<k<9)有相同的焦点;
其中真命题的序号为______.
①①“若x2+y2≠0,则x,y全不为零”的否命题是:
“若x2+y2=0,则x,y至少有一个为零”,是假命题;
②等号右边三个向量的系数和为
1
3
1,不满足四点共面的条件,
故不能得到点M与A,B,C一定共面,故②为假命题;
③由题意得  a=3,b=4,c=5,∴F1  (-5,0 )、F2(5,0),
Rt△PF1F2中,由勾股定理得4c2=|PF1|2+|PF2|2=(|PF1|-|PF2|)2+2•|PF1|•|PF2|=4a2+2•|PF1|•|PF2|,
∴100=4×9+2•|PF1|•|PF2|,∴|PF1|•|PF2|=32,
∴△PF1F2面积为
1
2
•|PF1|•|PF2|=16,故③为真命题;
④由于曲线
x2
25
+
y2
9
=1的焦点为(-4,0),(4,0),
曲线
x2
9-k
+
y2
25-k
=1 (0<k<9)也是表示椭圆,它的焦点为(0,-4),(0,4),故④为假命题.
故答案为 ③
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是

①等腰四棱锥的腰与底面所成的角都相等;
②等腰四棱锥的侧面与底面所成的二面角都相等或互补;
③等腰四棱锥的底面四边形必存在外接圆;
④等腰四棱锥的各顶点必在同一球面上.

查看答案和解析>>

科目:高中数学 来源: 题型:

在以下四个命题中,不正确的个数为(  )
(1)若
a
b
-
c
都是非零向量,则
a
 • 
b
=
a
 • 
c
a
⊥(
b
-
c
)的充要条件

(2)已知不共线的三点A、B、C和平面ABC外任意一点O,点P在平面ABC内的充要条件是存在x,y,z∈R,
OP
=x
OA
+y
OB
+z
OC
且x+y+z=1
(3)空间三个向量
a
b
c
,若
a
b
 b
c
,  则
a
c

(4)对于任意空间任意两个向量
a
, 
b
a
b
的充要条件是存在唯一的实数λ,使
a
b

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个命题中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设x、y∈R+,S=x+y,P=xy,以下四个命题中正确命题的序号是
③④
③④
.(把你认为正确的命题序号都填上)
①若P为定值m,则S有最大值2
m
;②若S=P,则P有最大值4;③若S=P,则S有最小值4;④若S2≥kP总成立,则k的取值范围为k≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个命题中,真命题的个数是(  )
①若p∨q为假命题,则p,q均为假命题;
②命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”;
③命题“?x∈R,使得x2+x+1<0”的否定是“?x∈R,都有x2+x+1≥0”;
④在△ABC中,A<B是sinA<sinB的充分不必要条件.

查看答案和解析>>

同步练习册答案