精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知函数

(1)若是单调函数,求的取值范围;

(2)若有两个极值点,证明:

 

【答案】

解:

(Ⅰ)f(x)=-lnx-ax2+x,

f¢(x)=--2ax+1=-.                       …2分

令Δ=1-8a.

当a≥时,Δ≤0,f¢(x)≤0,f(x)在(0,+∞)单调递减.              …4分

当0<a<时,Δ>0,方程2ax2-x+1=0有两个不相等的正根x1,x2

不妨设x1<x2

则当x∈(0,x1)∪(x2,+∞)时,f¢(x)<0,当x∈(x1,x2)时,f¢(x)>0,

这时f(x)不是单调函数.

综上,a的取值范围是[,+∞).                                  …6分

(Ⅱ)由(Ⅰ)知,当且仅当a∈(0,)时,f(x)有极小值点x1和极大值点x2

且x1+x2,x1x2

f(x1)+f(x2)=-lnx1-ax+x1-lnx2+x2

=-(lnx1+lnx2)-(x1-1)- (x2-1)+(x1+x2)

=-ln(x1x2)+ (x1+x2)+1=ln(2a)++1.                       …9分

令g(a)=ln(2a)++1,a∈(0,],

则当a∈(0,)时,g¢(a)=<0,g(a)在(0,)单调递减,

所以g(a)>g()=3-2ln2,即f(x1)+f(x2)>3-2ln2.                   …12分

【解析】本题考查函数的单调性和不等式的证明,考查学生利用求导研究函数性质的解题能力和分类讨论思想的应用。第一问借助函数为单调函数进行转化;第二问通过构造函数,证明函数的单调性分析得到函数的最值达到证明不等式的目的.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案