精英家教网 > 高中数学 > 题目详情
已知二阶矩阵M有特征值λ=8及对应的一个特征向量
e
1
=
1 
1 
,并且矩阵M对应的变换将点(-1,2)变换成(-2,4).
(1)求矩阵M;
(2)求矩阵M的另一个特征值,及对应的一个特征向量
e
2
的坐标之间的关系.
(3)求直线l:x-y+1=0在矩阵M的作用下的直线l′的方程.
分析:(1)设出要求的矩阵,根据矩阵的特征向量和特征值,和把一个点变成另一个点的坐标,得到关系式,即得到关于字母的方程组,解方程组得到结果.
(2)根据第一问得到矩阵M的特征多项式,求出对应的特征值,设出矩阵的另一个特征向量,根据两者的关系写出结果.
(3)设出点(x,y)是直线l上的任一点,其在矩阵M的变换下对应的点的坐标为(x′,y′),根据变换前后写出关系式,整理出要求的直线的方程.
解答:解:(1)设M=
ab
cd
,则
ab
cd
1
1
=8
1
1
=
8
8

a+b=8
c+d=8.
ab
cd
-1
2
=
-2
4

-a+2b=-2
-c+2d=4.

联立以上两方程组解得a=6,b=2,c=4,d=4,
故M=
62
44

(2)由(1)知,矩阵M的特征多项式为f(λ)=(λ-6)(λ-4)-8=λ2-10λ+16,
故其另一个特征值为λ=2.
设矩阵M的另一个特征向量是e2=
x
y

则M e2=
6x+2y
4x+4y
=2
x
y

解得2x+y=0.
(3)设点(x,y)是直线l上的任一点,
其在矩阵M的变换下对应的点的坐标为(x′,y′),
62
44
x
y
=
x
y

x=
1
4
x-
1
8
y,y=-
1
4
x+
3
8
y

代入直线l的方程后并化简得x′-y′+2=0,
即x-y+2=0.
点评:本题考查矩阵的特征向量和特征值的应用,本题是一个基础题,题目的运算量较小,并且考查最基本的矩阵问题,若出现是一个送分题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量
e1
=
1
1
,并且矩阵M对应的变换将点(-1,2)变换成(3,0),求矩阵M.
(2)选修4-4:坐标系与参数方程
过点M(3,4),倾斜角为
π
6
的直线l与圆C:
x=2+5cosθ
y=1+5sinθ
(θ为参数)相交于A、B两点,试确定|MA|•|MB|的值.
(3)选修4-5:不等式选讲
已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,试确定e的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知某圆的极坐标方程为:ρ2-42ρcos(θ-π4)+6=0.将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程.
(2)已知二阶矩阵M有特征值λ=8及对应的一个特征向量e1=
.
1
1
.
,且矩阵M对应的变换将点(-1,2)变换成
(-2,4).求矩阵M的另一个特征值及对应的一个特征向量e2的坐标之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=
1
1
,并且M对应的变换将点(-1,2)变换成(9,15),求矩阵M.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二阶矩阵M有特征值λ=8及对应的一个特征向量
e1
=[
 
1
1
],并且矩阵M对应的变换将点(-1,2)变换成(-2,4).
(1)求矩阵M;
(2)求矩阵M的另一个特征值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量
e1
=
1
1
,并且矩阵M对应的变换将点(-1,2)变换成(3,0),求矩阵M.

查看答案和解析>>

同步练习册答案