精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)对任意的实数x1、x2满足关系f(x1+x2)?=f(x1)+f(x2)+2.

(1)证明f(x)的图象关于点(0,-2)成中心对称图形;

(2)若x>0,则有f(x)>-2,求证:f(x)在(-∞,+∞)上是增函数.

剖析:对于(1),只要证明=-2即可;对于(2),注意到f(x)是抽象函数,欲证单调性,需对f(x)进行适当的变形.

证明:(1)令x1=x2=0,则f(0+0)=f(0)+f(0)+2,

    所以f(0)=-2.

    对任意实数x,令x1=x,x2=-x,有f(x-x)=f(x)+f(-x)+2,

    即f(0)-2=f(x)+f(-x),得=-2.

    又=0,

    这表明点M(x,f(x))与点N(-x,f(-x))的中点是(0,-2),即点M1N关于点(0,-2)成中心对称.

    由点M的任意性知:函数f(x)的图象关于点(0,-2)成中心对称.

    (2)对任意实数x1、x2,且x1<x2.

    由x2-x1>0,有f(x2-x1)>-2.

    于是f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)+2.

    所以f(x2)-f(x1)=f(x2-x1)+2>-2+2=0,

    即f(x2)>f(x1).

    所以f(x)在(-∞,+∞)上是增函数.

讲评:对于(1),求出f(0)=-2是解题的关键;对于(2),变形f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)+2是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案