精英家教网 > 高中数学 > 题目详情

如图,在中,,的中点, 求

(1)边的长;
(2)的值和中线的长

(1)2 (2)

解析试题分析:
(1)利用角C的余弦值通过正余弦之间的关系可以求的C角的正弦值,已知角B的大小可以计算角B的正弦值,在三角形ABC中,已知角c,角B的正弦值与b边的大小,则可以根据三角形ABC的正弦定理即可求的AB长.
(2)从(1)和已知可以求的B,C两个角的正余弦值,由于三角形内角和180度,故A角的余弦值可以通过诱导公式和余弦的和差角公式转化为B,C两角正余弦值来表示,从而得到A角的余弦值,在三角形ADC中利用A角的余弦定理即可求的CD的长度.
试题解析:
(1)由可知,是锐角,
所以,          .2分
由正弦定理               5分
(2)
                  8分
由余弦定理:
             12分
考点:正余弦和差角公式 三角形正余弦定理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在中,是边的中点,且.

(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a,b,c分别为△ABC的三个内角A,B,C的对边,向量,且向量.
(1)求角A的大小;
(2)若的面积为,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,函数处取得最大值.
(1)求角A的大小.
(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A,B,C的对边分别为a,b,c,且cos(A-B)cosB-sin(A-B)sin(A+C)
=-.
(1)求sinA的值;
(2)若a=4,b=5,求向量方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a、b、c分别为△ABC三个内角A、B、C的对边,acosC+asinC-b-c=0.
(1)求A;
(2)若a=2,△ABC的面积为,求b、c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在锐角△ABC中,内角A、B、C的对边分别为a、b、c,且2asinB=b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,a=3,b=2,∠B=2∠A.
(1)求cosA的值;
(2)求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,内角A,B,C所对的边分别为a,b,c,且f(A)=2cos sin+sin2-cos2.
(1)求函数f(A)的最大值;
(2)若f(A)=0,C=,a=,求b的值.

查看答案和解析>>

同步练习册答案