ÊýÁÐ{an}¸÷Ïî¾ùΪÕýÊý£¬snΪÆäǰnÏîµÄºÍ£¬¶ÔÓÚn¡ÊN*£¬×ÜÓÐan£¬sn£¬an2³ÉµÈ²îÊýÁУ®
£¨1£©ÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÉèÊýÁÐ{}µÄǰnÏîµÄºÍΪTn£¬ÊýÁÐ{Tn}µÄǰnÏîµÄºÍΪRn£¬ÇóÖ¤£ºµ±n¡Ý2ʱ£¬Rn-1=n£¨Tn-1£©
£¨3£©ÉèAnΪÊýÁÐ{}µÄǰnÏî»ý£¬ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃ²»µÈʽAn£¼a¶ÔÒ»ÇÐn¡ÊN+¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öaµÄȡֵ·¶Î§£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¡¾´ð°¸¡¿·ÖÎö£ºµÚ1ÎÊÖ÷ÒªÀûÓõȲîÖÐÏîµÃ³öSnÓëanµÄ¹ØÏµÊ½£¬ÔÚÀûÓÿÉÇó³öan£®µÚ2ÎʾÍÊÇÒªÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£¬ÏÈÑéÖ¤£ºn=2ʱµÈʽ³ÉÁ¢£¬ÔÙ¼ÙÉè n=kʱµÈʽ³ÉÁ¢£¬ÍÆn=k+1ʱ³ÉÁ¢£¬ÆäÖÐÓÐÒªÀûÓúüÙÉèÌõ¼þºÍRk=Rk-1+Tk¾Í¿ÉÖ¤³ö£®µÚ3ÎÊд³öAnµÄ±í´ïʽºó£¬¹¹ÔìÕâ¸ö¹ØÓÚÕýÕûÊýnµÄº¯Êý£¬ÒòΪAnÊÇÒ»¸önÏîµÄ³Ë»ý£¬ËùÒÔ²ÉÓÃ×÷É̵ķ½·¨Åжϳög£¨n£©µÄµ¥µ÷ÐÔ£¬´Ó¶øÊ¹²»µÈʽµÃµ½Ö¤Ã÷£®
½â´ð£º½â£º£¨1£©ÓÉÒÑÖªÓÐ2Sn=an+an2£®
µ±n=1ʱ£¬2a1=a1+a12⇒a1=1£¬
µ±n¡Ý2ʱ£¬2Sn-1=an-1+an-12£¬¡à2Sn=an+an2£¬
Á½Ê½Ïà¼õÓУº2an=an-an-1+an2-an-12£¬
¼´an-an-1=1£®
ËùÒÔan=n£®
£¨2£©ÓÉ£¨1£©µÃ£¬Rn=T1+T2+T3+¡­+Tn£®
µ±n=2ʱ£¬Rn-1=R1=T1=1£¬n£¨T2-1£©=1£¬
¹Êµ±n=2ʱÃüÌâ³ÉÁ¢£®
¼ÙÉèn=kʱ³ÉÁ¢£¬¼´Rk-1=k£¨Tk-1£©£¬Ôòµ±n=k+1ʱ£¬=£¬
˵Ã÷µ±n=k+1ʱÃüÌâÒ²³ÉÁ¢£®
£¨3£©¾ÝÒÑÖª¡­£¬Ôò£º¡­£¬=£¼1
¹Êg£¨n£©µ¥µ÷µÝ¼õ£¬ÓÚÊÇ
Ҫʹ²»µÈʽ¶ÔÒ»ÇÐn¡ÊN+¶¼³ÉÁ¢Ö»Ðè¼´¿É£®
µãÆÀ£º±¾ÌâµÄµÚ1ÎʱȽϼòµ¥£¬Ö÷Òª¿¼²éÁËÕâ¸ö֪ʶµã£®µÚ2ÎÊÖ÷Òª¿¼²éÁËÊýѧ¹éÄÉ·¨Ö¤Ã÷£¬¹Ø¼üÔÚÓÚ n=k+1ʱµÄÍÆµ¼¹ý³ÌÒªÀûÓúüÙÉèÌõ¼þºÍÌâµÄÌõ¼þ£¬ÔËËãµÄ¼¼ÇÉÐÔ½ÏÇ¿£®µÚ3ÎÊÊDZ¾ÌâµÄÄѵãËùÔÚ£¬ÒòΪ³£¹æÅжϵ¥µ÷ÐԵķ½·¨ÊÇ×÷²î£¬×÷É̱ȽÏÉÙÓ㬵«ÊÇÓɱ¾ÌâµÄÌØµãËù¾ö¶¨£¬ÕâÒ»µãÐèÒªÒ»¶¨µÄ˼άÁ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÊýÁÐ{an}¸÷Ïî¾ùΪÕýÊý£¬snΪÆäǰnÏîµÄºÍ£¬¶ÔÓÚn¡ÊN*£¬×ÜÓÐan£¬sn£¬an2³ÉµÈ²îÊýÁУ®
£¨1£©ÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÉèÊýÁÐ{
1
an
}µÄǰnÏîµÄºÍΪTn£¬ÊýÁÐ{Tn}µÄǰnÏîµÄºÍΪRn£¬ÇóÖ¤£ºµ±n¡Ý2ʱ£¬Rn-1=n£¨Tn-1£©
£¨3£©ÉèAnΪÊýÁÐ{
2an-1
2an
}µÄǰnÏî»ý£¬ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃ²»µÈʽAn
2an+1
£¼a¶ÔÒ»ÇÐn¡ÊN+¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öaµÄȡֵ·¶Î§£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÊýÁÐ{an}¸÷Ïî¾ùΪÕýÊý£¬ÆäǰnÏîºÍΪSn£¬ÇÒÂú×ã2anSn-
a
2
n
=1
£¬£®
£¨¢ñ£©ÇóÖ¤ÊýÁÐ{
S
2
n
}
ΪµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éèbn=
2
4
S
4
n
-1
£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£¬²¢ÇóʹTn£¾
1
6
(m2-3m)
¶ÔËùÓеÄn¡ÊN*¶¼³ÉÁ¢µÄ×î´óÕýÕûÊýmµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÊýÁÐ{an}¸÷Ïî¾ùΪÕýÊý£¬ÆäǰnÏîºÍΪSn£¬ÇÒÂú×ã2anSn-an2=1£®
£¨¢ñ£©ÇóÖ¤£ºÊýÁÐ{Sn2}ΪµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éèbn=
2
4
S
4
n
-1
£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTnµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÊýÁÐ{an}¸÷Ïî¾ùΪÕýÊý£¬ÆäǰnÏîºÍΪSn£¬ÇÒÂú×ã2anSn-an2=1£®
£¨¢ñ£©ÇóÖ¤ÊýÁÐ{
S
2
n
}ΪµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éèbn=
2
4S
4
n
-1
£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£¬²¢ÇóʹTn£¾
1
6
£¨m2-3m£© ¶ÔËùÓеÄn¡ÊN*¶¼³ÉÁ¢µÄ×î´óÕýÕûÊýmµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•ÄÏ»ãÇø¶þÄ££©ÊýÁÐ{an}¸÷Ïî¾ùΪÕýÊý£¬SnΪÆäǰnÏîµÄºÍ£®¶ÔÓÚn¡ÊN*£¬×ÜÓÐan£¬Sn£¬an2³ÉµÈ²îÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏîan£»
£¨2£©ÉèÊýÁÐ{
1
an
}
µÄǰnÏîºÍΪTn£¬ÊýÁÐ{Tn}µÄǰnÏîºÍΪRn£¬ÇóÖ¤£ºµ±n¡Ý2£¬n¡ÊNʱ£¬Rn-1=n£¨Tn-1£©£»
£¨3£©Èôº¯Êýf(x)=
1
(p-1)•3qx+1
µÄ¶¨ÒåÓòΪRn£¬²¢ÇÒ
lim
n¡ú¡Þ
f(an)=0(n¡ÊN*)
£¬ÇóÖ¤p+q£¾1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸