精英家教网 > 高中数学 > 题目详情

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(1)求直方图中的a值;
(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;
(3)估计居民月均用水量的中位数.

【答案】
(1)

解:∵1=(0.08+0.16+a+0.42+0.50+a+0.12+0.08+0.04)×0.5,整理可得:2=1.4+2a,

∴解得:a=0.3.


(2)

解:估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:

由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12,

又样本容量=30万,

则样本中月均用水量不低于3吨的户数为30×0.12=3.6万


(3)

解:根据频率分布直方图,得;

0.08×0.5+0.16×0.5+0.30×0.5+0.42×0.5=0.48<0.5,

0.48+0.5×0.5=0.73>0.5,

设中位数为a,则中位数a=2+ =2.04


【解析】(1)先根据频率分布直方图中的频率等于纵坐标乘以组距求出9个矩形的面积即频率,再根据直方图的总频率为1求出a的值;(II)根据已知中的频率分布直方图先求出月均用水量不低于3吨的频率,结合样本容量为30万,进而得解.(Ⅲ)根据频率分布直方图,求出使直方图中左右两边频率相等对应的横坐标的值;本题用样本估计总体,是研究统计问题的一个基本思想方法.频率分布直方图中小长方形的面积=组距× ,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型.
【考点精析】掌握频率分布直方图和平均数、中位数、众数是解答本题的根本,需要知道频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息;⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知的展开式中,前三项系数的绝对值依次成等差数列.

(1)求展开式中的常数项;

(2)求展开式中所有整式项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在研究函数fx)=xR时,分别给出下面几个结论:

①等式f(-x)=-fx)在xR时恒成立;

②函数fx)的值域为(-1,1);

③若x1x2,则一定有fx1)≠fx2);

④方程fx)=xR上有三个根.

其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列叙述:

①化简的结果为﹣

②函数y=在(﹣∞,﹣1)和(﹣1,+∞)上是减函数;

③函数y=log3x+x2﹣2在定义域内只有一个零点;

④定义域内任意两个变量x1,x2,都有,则f(x)在定义域内是增函数.

其中正确的结论序号是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P′( ),当P是原点时,定义“伴随点”为它自身,现有下列命题:
①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A.
②单元圆上的“伴随点”还在单位圆上.
③若两点关于x轴对称,则他们的“伴随点”关于y轴对称
④若三点在同一条直线上,则他们的“伴随点”一定共线.
其中的真命题是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N+
(1)若a2 , a3 , a2+a3成等差数列,求数列{an}的通项公式;
(2)设双曲线x2 =1的离心率为en , 且e2=2,求e12+e22+…+en2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…为自然对数的底数.
(1)讨论f(x)的单调性;
(2)证明:当x>1时,g(x)>0;
(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=60°,AB=2ADPD⊥平面ABCD,点MPC的中点.

(1)求证:PA∥平面BMD

(2)求证:ADPB

(3)若AB=PD=2,求点A到平面BMD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(  )
(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)
A.2018年
B.2019年
C.2020年
D.2021年

查看答案和解析>>

同步练习册答案