【题目】若f(x)为奇函数,且x0是y=f(x)﹣ex的一个零点,则下列函数中,﹣x0一定是其零点的函数是( )
A.y=f(﹣x)e﹣x﹣1
B.y=f(x)ex+1
C.y=f(x)ex﹣1
D.y=f(﹣x)ex+1
【答案】B
【解析】解:根据题意,x0是y=f(x)﹣ex的一个零点,则有f(x0)= , 依次分析选项:
对于A、y=f(﹣x)e﹣x﹣1,将x=﹣x0代入可得:y=f(x0) ﹣1≠0,不符合题意;
对于B、y=f(x)ex+1,将x=﹣x0代入可得:y=f(﹣x0) +1=﹣ +1=0,即﹣x0一定是其零点,符合题意,
对于C、y=f(x)ex﹣1,将x=﹣x0代入可得:y=f(﹣x0) ﹣1=﹣ ﹣1≠0,不符合题意;
对于D、y=f(﹣x)ex+1,将x=﹣x0代入可得:y=f(x0) +1= +1≠0,不符合题意;
故选:B.
根据题意,x0是y=f(x)﹣ex的一个零点,则有f(x0)= ,结合函数的奇偶性依次分析选项,验证﹣x0是不是其零点,即可得答案.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn满足(p﹣1)Sn=p2﹣an(p>0,p≠1),且a3= .
(1)求数列{an}的通项公式;
(2)设bn= ,数列{bnbn+2}的前n项和为Tn , 若对于任意的正整数n,都有Tn<m2﹣m+ 成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知双曲线C: =1(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ= ,且 |,则双曲线C的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx(x>0)的图象与x轴相切于点(3,0). (Ⅰ)求函数f(x)的解析式;
(Ⅱ)若g(x)+f(x)=﹣6x2+(3c+9)x,命题p:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|>1为假命题,求实数c的取值范围;
(Ⅲ)若h(x)+f(x)=x3﹣7x2+9x+clnx(c是与x无关的负数),判断函数h(x)有几个不同的零点,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: + =1(a>b>0)经过点( ,1),以原点为圆心,椭圆短半轴长为半径的圆经过椭圆的焦点.
(1)求椭圆C的方程;
(2)设过点(﹣1,0)的直线l与椭圆C相交于A、B两点,试问在x轴上是否存在一个定点M,使得 恒为定值?若存在,求出该定值及点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别是角A,B,C的对边,△ABC的面积为S,(a2+b2)tanC=8S,且sinAcosB=2cosAsinB,则cosA= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|. (Ⅰ)若关于x的不等式f(x)<g(x)有解,求实数a的取值范围;
(Ⅱ)若关于x的不等式f(x)<g(x)的解集为 ,求a+b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列共有四个命题: ⑴命题“ ”的否定是“x∈R,x2+1<3x”;
⑵在回归分析中,相关指数R2为0.96的模型比R2为0.84的模型拟合效果好;
⑶a,b∈R, ,则p是q的充分不必要条件;
⑷已知幂函数f(x)=(m2﹣3m+3)xm为偶函数,则f(﹣2)=4.
其中正确的序号为 . (写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax﹣lnx,F(x)=ex+ax,其中x>0,a<0.
(1)若f(x)和F(x)在区间(0,ln3)上具有相同的单调性,求实数a的取值范围;
(2)若a∈(﹣∞,﹣ ],且函数g(x)=xeax﹣1﹣2ax+f(x)的最小值为M,求M的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com