精英家教网 > 高中数学 > 题目详情
设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,an与2的等差中项等于Sn与2的等比中项.
(1)写出数列{an}的前3项;
(2)求数列{an}的通项公式(写出推证过程);
(3)令bn=
1
2
(
an+1
an
+
an
an+1
)(n∈N)
,求
lim
n→∞
(b1+b2+…+bn-n)
分析:(1)利用已知an与2的等差中项等于Sn与2的等比中项,分别令n=1,2,3.即可得解.
(2)法1:猜想再利用数学归纳法进行证明.
      法2:an与2的等差中项等于Sn与2的等比中项,推出Sn并由此得出Sn+1,进而得an的递推关系,从而推得数列{an}的通项公式.
(3)利用构造法求得bn,并利用裂项相消法求和,进而得解.
解答:解:(1)由题意,当n=1时有
a1+2
2
=
2S1
,S1=a1
a1+2
2
=
2a1

解得a1=2.
当n=2时有
a2+2
2
=
2S2
,S2=a1+a2,a1=2代入,整理得
(a2-2)2=16.
由a2>0,解得a2=6.
当n=3时有
a3+2
2
=
2S3
,S3=a1+a2+a3,将a1=2,a2=6代入,整理得
(a3-2)2=64.
由a3>0,解得a3=10.
故该数列的前3项为2,6,10.

(2)解法一:由(1)猜想数列{an}有通项公式an=4n-2.
下面用数学归纳法证明数列{an}的通项公式是
an=4n-2(n∈N).
①当n=1时,因为4×1-2=2,又在(1)中已求出a1=2,所以上述结论成立.
②假设n=k时结论成立,即有ak=4k-2.由题意,有
ak+2
2
=
2Sk

将ak=4k-2代入上式,得2k=
2Sk
,解得Sk=2k2
由题意,有
ak+1+2
2
=
2Sk+1
,Sk+1=Sk+ak+1
将Sk=2k2代入,得(
ak+1+2
2
)2
=2(ak+1+2k2),整理得ak+12-4ak+1+4-16k2=0.
由ak+1>0,解得ak+1=2+4k.所以ak+1=2+4k=4(k+1)-2.
这就是说,当n=k+1时,上述结论成立.
根据①、②,上述结论对所有的自然数n成立.
解法二:由题意,有
an+2
2
=
2Sn
(n∈N)
,整理得Sn=
1
8
(an+2)2
由此得Sn+1=
1
8
(an+1+2)2
∴an+1=Sn+1-Sn=
1
8
[(an+1+2)2-(an+2)2],
整理得(an+1+an)(an+1-an-4)=0,
由题意知an+1+an≠0,∴an+1-an=4.
即数列{an}为等差数列,其中a1=2,公差d=4.∴an=a1+(n-1)d=2+4(n-1),
即通项公式为an=4n-2.

(3)解:令cn=bn-1,则cn=
1
2
(
an+1
an
+
an
an+1
-2)
=
1
2
[(
2n+1
2n-1
-1)+(
2n-1
2n+1
-1)]
=
1
2n-1
-
1
2n+1

b1+b2+…+bn-n=c1+c2+…+cn
=(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)
=1-
1
2n+1

lim
n→∞
(b1+b2+…+bn-n)=
lim
n→∞
(1-
1
2n+1
)=1
点评:本题是一道数列综合题,主要考查:通项公式求法,构造法求数列通项,裂项相消法求和,以及极限的求法等知识,综合性较高,要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有4Sn=(an+1)2
(I)求a1,a2的值;
(II)求数列{an}的通项公式;
(III)令b1=1,b2k=a2k-1+(-1)k,b2k+1=a2k+3k(k=1,2,3,…),求{bn}的前20项和T20

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的n∈N+,都有8Sn=(an+2)2
(1)写出数列{an}的前3项;
(2)求数列{an}的通项公式(写出推证过程);
(3)设bn=
4
anan+1
,Tn是数列{bn}的前n项和,求使得Tn
m
20
对所有n∈N+都成立的最小正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•东城区二模)设{an}是正数组成的等比数列,a1+a2=1,a3+a4=4,则a4+a5=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an } 是正数组成的数列,其前n项和为Sn,,所有的正整数n,满足
an+2
2
=
2S n

(1)求a1、a2、a3;    
(2)猜想数列{an }的通项公式,并用数学归纳法证明.

查看答案和解析>>

同步练习册答案