精英家教网 > 高中数学 > 题目详情

已知递增的等比数列{}满足:,且的等差中项.

(1)求数列{}的通项公式;

(2)若,对任意正整数n,<0恒成立,试求m的取值范围。

解、(1)设等比数列{an}的首项为a1,公比为q.依题意,

有2(a3+2)=a2a4,代入a2a3a4=28,得a3=8.

a2a4=20.∴解之得,或

又{an}单调递增,∴q=2,a1=2,∴an=2n,  ………6分  

(2)bn=2n·log2n=-n·2n

∴-Sn=1×2+2×22+3×23+…+n×2n

-2Sn=1×22+2×23+…+(n-1)2nn·2n1

①-②得,Sn=2+22+23+…+2nn·2n1

n·2n1

=2n1-2-n·2n1

Sn+(nman1<0,

即2n1-2-n·2n1n·2n1m·2n1<0对任意正整数n恒成立,

m·2n1<2-2n1.对任意正整数nm-1恒成立.

-1>-1,∴m≤-1.即m的取值范围是(-∞,-1].………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log2an+1,Sn是数列{bn}的前n项和,求使Sn>42+4n成立的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log2an+1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log2an+1,Sn是数列{anbn}的前n项和,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2、a4的等差中项.求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项,若bn=log2an+1,则数列{bn}的前n项和Sn=
n(n+3)
2
n(n+3)
2

查看答案和解析>>

同步练习册答案