精英家教网 > 高中数学 > 题目详情
已知f(x)=loga
1-kxx-1
(a>1)
是奇函数
(Ⅰ)求k的值,并求该函数的定义域;
(Ⅱ)根据(Ⅰ)的结果,判断f(x)在(1,+∞)上的单调性,并给出证明.
分析:(I)根据函数是奇函数,则f(x)+f(-x)=0,建立等式关系,求出k的值,然后根据真数大于零求出函数的定义域;
(II)在(1,+∞)上任取x1,x2,并且x1>x2,然后判定f(x1)与f(x2)的大小,从而判断f(x)在(1,+∞)上的单调性.
解答:解:(Ⅰ)∵f(x)=loga
1-kx
x-1
(a>1)
是奇函数,
∴f(x)+f(-x)=0,即loga
1-kx
x-1
1+kx
-x-1
=0

则1-k2x2=1-x2,即k=±1,(3分)
当k=1时,
1-kx
x-1
=-1<0
,所以k=-1(14分)
定义域为:{x|x>1或x<-1}
(Ⅱ)在(1,+∞)上任取x1,x2,并且x1>x2,则f(x1)-f(x2)=loga
(x1+1)(x2-1)
(x1-1)(x2+1)
(8分)
又(x1+1)(x2-1)-(x1-1)(x2+1)=2(x2-x1)<0∴0<
(x1+1)(x2-1)
(x1-1)(x2+1)
<1
,又a>1,
loga
(x1+1)(x2-1)
(x1-1)(x2+1)
<0
(10分)
所以f(x1)<f(x2),所以f(x)在(1,+∞)上是单调递减函数(12分)
点评:本题主要考查了奇函数的定义,以及函数的定义域和函数在给定区间上的单调性,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
log 4 x ,x>0
1
2
 ) x ,x≤0
,则f(f(-4))的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log(2x+1)在(-,0)内恒有f(x)>0,则a的取值范围是

A.a>1

B.0<a<1

C.a<-1或a>1

D.-a<-1或1<a

查看答案和解析>>

科目:高中数学 来源:2013届内蒙古巴彦淖尔市中学高二下期中文科数学试卷(解析版) 题型:解答题

已知f(x)=log  (a>0且a≠1).

(1)求f(x)的 定义域;

(2)判断f(x)的奇偶性并予以证明.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=
log 4 x ,x>0
1
2
 ) x ,x≤0
,则f(f(-4))的值为(  )
A.0B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log a (a>0, 且a≠1)

求f(x)的定义域

求使 f(x)>0的x的取值范围.

查看答案和解析>>

同步练习册答案