精英家教网 > 高中数学 > 题目详情
某学校高一年级组建了A、B、C、D四个不同的“研究性学习”小组,要求高一年级学生必须参加,
且只能参加一个小组的活动.假定某班的甲、乙、丙三名同学对这四个小组的选择是等可能的.
(1)求甲、乙、丙三名同学选择四个小组的所有选法种数;
(2)求甲、乙、丙三名同学中至少有二人参加同一组活动的概率;
(3)设随机变量X为甲、乙、丙三名同学参加A小组活动的人数,求X的分布列与数学期望EX.
(1); (2);  (3)分布列见解析,期望为.

试题分析:(1)利用分布乘法原理三名同学先后选择共有种;(2)找出三名同学中至少有二人参加同一组活动的对立面,三名同学选择三个小组的概率为,则可得所求概率为 ;(3)X的可能取值为0,1,2,3,分别求出所对应的概率,列出分布列,进一步求出期望.
解:(1)甲、乙、丙三名同学每人选择四个小组的方法是4种,故有种.(4分)
(2)甲、乙、丙三名同学选择三个小组的概率为
所以三名同学至少有二人选择同一小组的概率为.      (8分)
(3)由题意X的可能取值为:0,1,2,3

,       (12分)
所以X的分布列如下:
X
0
1
2
3
P




 
故数学期望.      (14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

一个袋中装有8个大小质地相同的球,其中4个红球、4个白球,现从中任意取出四个球,设为取得红球的个数.
(1)求的分布列;
(2)若摸出4个都是红球记5分,摸出3个红球记4分,否则记2分.求得分的期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n
14
15
16
17
18
19
20
频数
10
20
16
16
15
13
10
 
①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为了检验某套眼睛保健操预防学生近视的作用,把500名做过该保健操的学生与另外500名未做该保健操的学生视力情况记录作比较,提出假设H0:“这套眼睛保健操不能起到预防近视的作用”,利用2×2列联表计算的K2≈3.918.经查对临界值表知P(K2≥3.841)=0.05.对此,四名同学做出了以下的判断:
P:有95%的把握认为“这种眼睛保健操能起到预防近视的作用”;
q.若某人未做眼睛保健操,那么他有95%的可能性得近视;
r:这种眼睛保健操预防近视的有效率为95%;
s:这种眼睛保健操预防近视的有效率为5%,
则下列结论中,正确结论的序号是(  )
①p∧?q;②?p∧q;③(?p∧?q)∧(r∨s);④(p∨?r)∧(?q∨s).
A.①③B.②④C.①④D.都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某工厂生产A,B两种元件,其质量按测试指标划分,指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100个进行检测,检测结果统计如下:
测试
指标
[70,76)
[76,82)
[82,88)
[88,94)
[94,100]
元件A
8
12
40
32
8
元件B
7
18
40
29
6
(1)试分别估计元件A,元件B为正品的概率;
(2)生产1个元件A,若是正品则盈利40元,若是次品则亏损5元;生产1个元件B,若是正品则盈利50元,若是次品则亏损10元.在(1)的前提下,
(ⅰ)X为生产1个元件A和1个元件B所得的总利润,求随机变量X的分布列和数学期望;
(ⅱ)求生产5个元件B所得利润不少于140元的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2,则的最小值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙、丙三名音乐爱好者参加某电视台举办的演唱技能海选活动,在本次海选中有合格和不合格两个等级.若海选合格记分,海选不合格记分.假设甲、乙、丙海选合格的概率分别为,他们海选合格与不合格是相互独立的.
(1)求在这次海选中,这三名音乐爱好者至少有一名海选合格的概率;
(2)记在这次海选中,甲、乙、丙三名音乐爱好者所得分之和为随机变量,求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

同时投掷两枚均匀的骰子,所得点数之和是8的概率是    (  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知甲盒中仅有1个球且为红球,乙盒中有个红球和个篮球,从乙盒中随机抽取个球放入甲盒中.
(a)放入个球后,甲盒中含有红球的个数记为
(b)放入个球后,从甲盒中取1个球是红球的概率记为.
A.B.
C.D.

查看答案和解析>>

同步练习册答案