精英家教网 > 高中数学 > 题目详情

已知数列,满足

(1)已知,求数列所满足的通项公式;

(2)求数列 的通项公式;

(3)己知,设,常数,若数列是等差数列,记,求.

 

【答案】

(1);(2);(3).

【解析】

试题分析:(1)这属于数列的综合问题,我们只能从已知条件出发进行推理,以向结论靠拢,由已知可得,从而当时有结论

,很幸运,此式左边正好是,则此我们得到了数列的相邻两项的差,那么为了求,可以采取累加的方法(也可引进新数列)求得,注意这里有,对要另外求得;(2)有了第(1)小题,那么求就方便多了,因为,这里不再累赘不;(3)在(2)基础上有,我们只有求出才能求出,这里可利用等差数列的性质,其通项公式为的一次函数(当然也可用等差数列的定义)求出,从而得到,那么和的求法大家应该知道是乘公比错位相减法,借助已知极限可求出极限.

试题解析:(1)

时,有

数列的递推公式是.

于是,有

.

(说明:这里也可利用,依据递推,得

由(1)得

,可求得

时,,符合公式

数列的通项公式

 (3)由(2)知,.又是等差数列,

因此,当且仅当是关于的一次函数或常值函数,即().

于是,

所以,

考点:(1)数列综合题与通项公式;(2)数列通项公式;(3)等差数列的性质,借位相减法,极限.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、已知数列an满足:a4n+1=1,a4n+3=0,a2n=an,n∈N*,则a2011=
0
;a2018=
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an满足a1=2,
an+1
2an
=1+
1
n

(Ⅰ)求数列an的通项公式;
(Ⅱ)若数列{
an
n
}
的前n项和为Sn,试比较an-Sn与2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①命题p:?x0∈[-1,1],满足x02+x0+1>a,使命题p为真的实数a的取值范围为a<3;
②代数式sinα+sin(
2
3
π+α)+sin(
4
3
π+α)
的值与角α有关;
③将函数f(x)=3sin(2x-
π
3
)
的图象向左平移
π
3
个单位长度后得到的图象所对应的函数是奇函数;
④已知数列an满足:a1=m,a2=n,an+2=an+1-an(n∈N*),记Sn=a1+a2+a3+…+an,则S2011=m;其中正确的命题的序号是
 
 (把所有正确的命题序号写在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an满足a1=
1
4
an=
an-1
(-1)nan-1-2
(n≥2,n∈N)

(1)求数列an的通项公式an
(2)设bn=
1
a
2
n
,求数列bn的前n项和Sn
(3)设cn=ansin
(2n-1)π
2
,数列cn的前n项和为Tn.求证:对任意的n∈N*Tn
4
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an满足a1=1,an+1=(1+cos2
2
)an+sin2
2
,n∈N*

(1)求a2,a3,a4;并求证:a2m+1+2=2(a2m-1+2),(m∈N*);
(2)设bn=
a2n
a2n-1
Sn=b1+b2+…+bn
,求证:Sn<n+
5
3

查看答案和解析>>

同步练习册答案