精英家教网 > 高中数学 > 题目详情
3.cos54°+cos66°-cos6°=(  )
A.0B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

分析 利用和差化积公式,诱导公式化简已知即可计算求值.

解答 解:cos54°+cos66°-cos6°
=2cos$\frac{54°+66°}{2}$cos$\frac{54°-66°}{2}$-cos6°
=2cos60°cos(-6°)-cos6°
=cos6°-cos6°
=0.
故选:A.

点评 本题主要考查了和差化积公式,诱导公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.复数$\frac{3-i}{i}$=(  )
A.1+3iB.-1-3iC.-1+3iD.1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在等比数列{an}中,${a_1}+{a_2}=\frac{1}{2},{a_5}+{a_6}=8,{a_n}>0$,则a3+a4=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$\overrightarrow{a}$,$\overrightarrow{b}$是不共线的两个向量,且$\overrightarrow{a}$$•\overrightarrow{b}$>0,|$\overrightarrow{b}$|≥4,若对任意m,n∈R,|$\overrightarrow{a}$+m$\overrightarrow{b}$|的最小值是1,|$\overrightarrow{b}$+n$\overrightarrow{a}$|的最小值是2,则$\overrightarrow{a}$$•\overrightarrow{b}$的最小值是4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.植物园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于30m的围墙.现有两种方案:
方案①多边形为直角三角形AEB(∠AEB=90°),如图1所示,其中AE+EB=30m;
方案②多边形为等腰梯形AEFB(AB>EF),如图2所示,其中AE=EF=BF=10m.
请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.广场舞是现代城市群众文化、娱乐发展的产物,其兼具文化性和社会性,是精神文明建设成果的一个重要指标和象征.2015年某高校社会实践小组对某小区广场舞的开展状况进行了年龄的调查,随机抽取了40名广场舞者进行调查,将他们年龄分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图的频率分布直方图.问:
(1)估计在40名广场舞者中年龄分布在[40,70)的人数;
(2)求40名广场舞者年龄的众数和中位数的估计值;
(3)若从年龄在[20,40)中的广场舞者中任取2名,求这两名广场舞者中年龄在[30,40)恰有1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,在长方形OABC内任取一点P(x,y),则点P落在阴影部分内的概率为$\frac{2e-3}{2e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,点A是椭圆M与圆C:x2+(y-2$\sqrt{2}$b)2=$\frac{4}{9}$m2在第一象限的交点,且点A到F2的距离等于$\frac{1}{3}$m,若椭圆M上一动点到点F1与到点C的距离之差的最大值为2a-m,则椭圆M的离心率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若两条异面直线中的一条在平面α内,讨论另一条直线与平面α的位置关系.

查看答案和解析>>

同步练习册答案