精英家教网 > 高中数学 > 题目详情
11.下面说法正确的是(  )
A.棱锥的侧面不一定是三角形
B.棱柱的各侧棱长不一定相等
C.棱台的各侧棱延长必交于一点
D.用一个平面截棱锥,得到两个几何体,一个是棱锥,另一个是棱台

分析 棱锥的侧面都是三角形;棱柱的各侧棱长全相等;棱台的各侧棱延长必交于一点;用一个平行于底面的平面截棱锥,得到两个几何体,一个是棱锥,另一个是棱台.

解答 解:在A中,棱锥的侧面都是三角形,故A错误;
在B中,棱柱的各侧棱长全相等,故B错误;
在C中,棱锥被平行于底面的平面所截形成棱台棱台的侧棱延长交于原棱锥的顶点,
故棱台的各侧棱延长必交于一点,故C正确;
在D中,用一个平行于底面的平面截棱锥,得到两个几何体,一个是棱锥,另一个是棱台,故D错误.
故选:C.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意棱锥、棱台、棱柱的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.掷两颗骰子,出现点数之和等于8的概率等于$\frac{5}{36}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义f″(x)是函数y=f(x)的导函数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的图象的“拐点”,可以证明,任何三次函数的图象都有“拐点”,任何三次函数的图象都有对称中心,且“拐点”就是对称中心.请你根据这一结论判断下列命题:
①任意三次函数都关于点(-$\frac{b}{3a}$,f(-$\frac{b}{3a}$))对称;
②存在三次函数y=f(x),f(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的图象的对称中心;
③存在三次函数的图象不止一个对称中心;
④若函数g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2-$\frac{5}{12}$,则g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+…+g($\frac{2016}{2017}$)=-1008
其中正确命题的序号为①②④(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)的导函数为f′(x),若f(x)=sinx,则下列等式正确的是(  )
A.f($\frac{π}{3}$)=f′($\frac{2π}{3}$)B.f($\frac{2π}{3}$)=f′($\frac{π}{3}$)C.f($\frac{π}{4}$)=f′($\frac{3π}{4}$)D.f($\frac{3π}{4}$)=f′($\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.直三棱柱ABC-A1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,$\overrightarrow{BD}$=λ$\overrightarrow{DC}$.
(1)若λ=1,求直线DB1与平面A1C1D所成角的正弦值;
(2)若二面角B1-A1C1-D的大小为60°,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在几何体ABCDE中,矩形BCDE的边CD=2,BC=AB=1,∠ABC=90°,直线EB⊥平面ABC,P是线段AD上的点,且AP=2PD,M为线段AC的中点.
(Ⅰ)证明:BM∥平面ECP;
(Ⅱ)求二面角A-EC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,现用油漆对该型号零件表面进项防锈处理,若100平方厘米的零件表面约需用油漆10克,那么对100个该型号零件表面进行防锈处理约需油漆(  )(π取3.14)
A.1.13千克B.1.45千克C.1.57千克D.1.97千克

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.正方形ABCD所在的平面与三角形ABE所在的平面交于AB,且DE⊥平面ABE,ED=AE=1.
(1)求证:平面ABCD⊥平面ADE;
(2)求平面CEB与平面ADE所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=xlnx,g(x)=-x2+ax-3,a∈R.
(1)解关于x的不等式g(x)>0;
(2)若对任意x∈(0,+∞),不等式f(x)≥$\frac{1}{2}$g(x)恒成立,求a的取值范围;
(3)证明:对任意x∈(0,+∞),lnx>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$.

查看答案和解析>>

同步练习册答案