精英家教网 > 高中数学 > 题目详情
6.直三棱柱ABC-A1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,$\overrightarrow{BD}$=λ$\overrightarrow{DC}$.
(1)若λ=1,求直线DB1与平面A1C1D所成角的正弦值;
(2)若二面角B1-A1C1-D的大小为60°,求实数λ的值.

分析 (1)分别以AB,AC,AA1所在直线为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线DB1与平面A1C1D所成角的正弦值.
(2)求出平面A1C1D的法向量和平面A1B1C1的一个法向量,利用向量法能求出实数λ的值.

解答 解:(1)分别以AB,AC,AA1所在直线为x,y,z轴,建立空间直角坐标系.
则A(0,0,0),B(2,0,0),C(0,4,0),A1(0,0,2),B1(2,0,2),C1(0,4,2),…(2分)
当λ=1时,D为BC的中点,∴D(1,2,0),
$\overrightarrow{D{B}_{1}}$=(1,-2,2),$\overrightarrow{{A}_{1}{C}_{1}}$=(0,4,0),$\overrightarrow{{A}_{1}D}$=(1,2,-2),
设平面A1C1D的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{A}_{1}{C}_{1}}=4y=0}\\{\overrightarrow{n}•\overrightarrow{{A}_{1}D}=x+2y-2z=0}\end{array}\right.$,取x=2,
得$\overrightarrow{n}$=(2,0,1),
又cos<$\overrightarrow{D{B}_{1}},\overrightarrow{n}$>=$\frac{\overrightarrow{D{B}_{1}}•\overrightarrow{n}}{|\overrightarrow{D{B}_{1}}|•|\overrightarrow{n}|}$=$\frac{4}{3\sqrt{5}}$=$\frac{4\sqrt{5}}{15}$,
∴直线DB1与平面A1C1D所成角的正弦值为$\frac{4\sqrt{5}}{15}$.…(6分)
(2)∵$\overrightarrow{BD}$=$λ\overrightarrow{DC}$,∴D($\frac{2}{λ+1}$,$\frac{4λ}{λ+1}$,0),
∴$\overrightarrow{{A}_{1}{C}_{1}}$=(0,4,0),$\overrightarrow{{A}_{1}D}$=($\frac{2}{λ+1}$,$\frac{4λ}{λ+1}$,-2),
设平面A1C1D的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{A}_{1}{C}_{1}}=4y=0}\\{\overrightarrow{n}•\overrightarrow{{A}_{1}D}=\frac{2}{λ+1}x+\frac{4λ}{λ+1}y-2z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(λ+1,0,1).…(8分)
又平面A1B1C1的一个法向量为$\overrightarrow{m}$=(0,0,1),
∵二面角B1-A1C1-D的大小为60°,
∴|cos<$\overrightarrow{m},\overrightarrow{n}$>|=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$|=$\frac{1}{\sqrt{(λ+1)^{2}+1}}$=$\frac{1}{2}$,
解得$λ=\sqrt{3}-1$或$λ=-\sqrt{3}-1$(不合题意,舍去),
∴实数λ的值为$\sqrt{3}-1$.…(10分)

点评 本题考查线面角的正弦值的求法,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=sin(ωx+ϕ)(ω>0)的部分图象如图所示,下面结论正确的个数是(  )
①函数f(x)的最小正周期是2π
②函数f(x)的图象可由函数g(x)=sin2x的图象向左平移$\frac{π}{3}$个单位长度得到
③函数f(x)的图象关于直线x=$\frac{π}{12}$对称
④函数f(x)在区间[$\frac{π}{12},\frac{π}{6}}$]上是增函数.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线x-ay+a=0与直线3x+y+2=0垂直,则实数a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在锐角△ABC中,cosA=$\frac{\sqrt{5}}{5}$,sinB=$\frac{3\sqrt{10}}{10}$.
(1)求角C;
(2)设AB=$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下面说法正确的是(  )
A.棱锥的侧面不一定是三角形
B.棱柱的各侧棱长不一定相等
C.棱台的各侧棱延长必交于一点
D.用一个平面截棱锥,得到两个几何体,一个是棱锥,另一个是棱台

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AA1的中点,则点C1到平面BDE的距离为$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一个几何体的三视图如图所示,那么该几何体的最长棱长为(  )
A.2B.$2\sqrt{2}$C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下面几种推理是合情推理的是(  )
①由圆的性质类比出球的有关性质;
②由直角三角形、等腰三角形、等边三角形的内角和是180°归纳出所有三角形的内角和是180°;
③一班所有同学的椅子都坏了,甲是一班学生,所以甲的椅子坏了;
④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸多边形内角和是(n-2)•180°.
A.①②④B.①③④C.②④D.①②③④

查看答案和解析>>

同步练习册答案