精英家教网 > 高中数学 > 题目详情
(本小题满分15分)已知点,一动圆过点且与圆内切.
(Ⅰ)求动圆圆心的轨迹的方程;
(Ⅱ)设点,点为曲线上任一点,求点到点距离的最大值
(Ⅲ)在的条件下,设△的面积为是坐标原点,是曲线上横坐标为的点),以为边长的正方形的面积为.若正数满足,问是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.
(Ⅰ)(Ⅱ)(Ⅲ)存在最小值
解:(Ⅰ)设圆心坐标为,则动圆的半径为
又动圆与内切,所以有化简得
所以动圆圆心轨迹C的方程为. ………………………………4分
(Ⅱ)设,则
,令,所以,
,即上是减函数,
,即时,上是增函数,在上是减函数,则
,即时,上是增函数,
所以, .…………………………………………9分
(Ⅲ)当时,,于是,,
若正数满足条件,则,即
,令,设,则
于是
所以,当,即时,
.所以,存在最小值.………………………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)已知O为坐标原点,点AB分别在x轴,y轴上运动,且|AB|=8,动点P满足,设点P的轨迹为曲线C,定点为M(4,0),直线PM交曲线C于另外一点Q.(1)求曲线C的方程;(2)求△OPQ积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线与双曲线有相同的焦点,点是两曲线的一个交点,且轴,若为双曲线的一条斜率大于0的渐近线,则的斜率可以在下列给出的某个区间内,该区间可以是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动圆P过点且与直线相切.
(Ⅰ) 求动圆圆心P的轨迹E的方程;
(Ⅱ) 设直线与轨迹E交于点A、BM是线段AB的中点,过M轴的垂线交轨迹EN
① 证明:轨迹EN处的切线AB平行;
② 是否存在实数,使?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,以为圆心的圆与直线相切.
(1)求圆的方程;(2)圆轴相交于两点,圆内的动点使成等比数列,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面内到两定点的距离之和为4的点M的轨迹是      (    )
A.椭圆B.线段C.圆D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点,动点,则点的轨迹是 (   )
圆            椭圆   双曲线     抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是三角形的一个内角,且,则方程所表示的曲线是(  )
A.焦点在轴上的椭圆B.焦点在轴上的椭圆
C.焦点在轴上的双曲线D.焦点在轴上的双曲线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与直线平行的抛物线的切线方程是
A.B.C.D.

查看答案和解析>>

同步练习册答案