【题目】无穷数列{an}由k个不同的数组成,Sn为{an}的前n项和,若对任意n∈N* , Sn∈{2,3},则k的最大值为 .
【答案】4
【解析】解:对任意n∈N* , Sn∈{2,3},可得
当n=1时,a1=S1=2或3;
若n=2,由S2∈{2,3},可得数列的前两项为2,0;或2,1;或3,0;或3,﹣1;
若n=3,由S3∈{2,3},可得数列的前三项为2,0,0;或2,0,1;
或2,1,0;或2,1,﹣1;或3,0,0;或3,0,﹣1;或3,1,0;或3,1,﹣1;
若n=4,由S3∈{2,3},可得数列的前四项为2,0,0,0;或2,0,0,1;
或2,0,1,0;或2,0,1,﹣1;或2,1,0,0;或2,1,0,﹣1;
或2,1,﹣1,0;或2,1,﹣1,1;或3,0,0,0;或3,0,0,﹣1;
或3,0,﹣1,0;或3,0,﹣1,1;或3,﹣1,0,0;或3,﹣1,0,1;
或3,﹣1,1,0;或3,﹣1,1,﹣1;
…
即有n>4后一项都为0或1或﹣1,则k的最大个数为4,
不同的四个数均为2,0,1,﹣1,或3,0,1,﹣1.
所以答案是:4.
科目:高中数学 来源: 题型:
【题目】将2名女教师,4名男教师分成2个小组,分别安排到甲、乙两所学校轮岗支教,每个小组由1名女教师和2名男教师组成,则不同的安排方案共有( )
A.24种
B.12种
C.10种
D.9种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】不等式|x+3|﹣|x﹣1|≤a2﹣3a对任意实数x恒成立,则实数a的取值范围为( )
A.(﹣∞,﹣1]∪[4,+∞)
B.(﹣∞,﹣2]∪[5,+∞)
C.[1,2]
D.(﹣∞,1]∪[2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为10名学生的预赛成绩,其中有三个数据模糊.
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳远(单位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳绳(单位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a﹣1 | b | 65 |
在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( )
A.2号学生进入30秒跳绳决赛
B.5号学生进入30秒跳绳决赛
C.8号学生进入30秒跳绳决赛
D.9号学生进入30秒跳绳决赛
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:不等式|x-1|>m-1的解集为R,命题q:f(x)=-(5-2m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】Rt△ABC中,斜边BC=4,以BC的中点O为圆心,作半径为r(r<2)的圆,圆O交BC于P,Q两点,则|AP|2+|AQ|2=( )
A.8+r2
B.8+2r2
C.16+r2
D.16+2r2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知实数a,b满足2a=3,3b=2,则函数f(x)=ax+x﹣b的零点所在的区间是( )
A.(﹣2,﹣1)
B.(﹣1,0)
C.(0,1)
D.(1,2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com