精英家教网 > 高中数学 > 题目详情
8.已知四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,且四边形ABCD为菱形,F为棱BB1的中点,N为线段AC1的中点.
(1)求证:直线MF∥平面ABCD;
(2)求证:平面AFC1⊥平面ACC1A1

分析 (1)延长C1F交CB的延长线于点M,由三角形的中位线的性质可得NF∥AM,从而证明NF∥平面ABCD.
(2)由A1A⊥BD,AC⊥BD,可得BD⊥平面ACC1A1,由DAMB为平行四边形,故MA∥BD,故MA⊥平面ACC1A1,从而证得平面AFC1⊥ACC1A1

解答 证明:(1)延长C1F交CB的延长线于点M,连接AM.
∵F是BB1的中点,∴F为C1M的中点,B为CM的中点.
又N是线段AC1的中点,故NF∥AM.
又NF?平面ABCD内,AM?平面ABCD,
∴NF∥平面ABCD.
(2)连BD,由直四棱柱ABCD-A1B1C1D1 ,可知A1A⊥平面ABCD,
又∵BD?平面ABCD,∴A1A⊥BD.
∵四边形ABCD为菱形,∴AC⊥BD.
又∵AC∩A1A=A,AC,A1A?平面ACC1A1,∴BD⊥平面ACC1A1
在四边形DAMB中,DA∥BM且DA=BM,∴四边形DAMB为平行四边形,
故MA∥BD,∴MA⊥平面ACC1A1
又∵MA?平面AFC1
∴平面AFC1⊥ACC1A1

点评 本题考查直线与平面平行的判定,考查平面与平面垂直的判断,考查推理分析与运算能力,考查等价转化思想与数形结合思想的综合运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.几何体三视图如图所示,其中俯视图为边长为1的等边三角形,则此几何体的体积为$\frac{{\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)设全集U={x|x≤4},集合A={x|x2-x-6<0},集合B={x|-3<x≤3},求(∁UA)∩B.
(2)当tanα=3,求$\frac{sinα+cosα}{sinα-cosα}$,cos2α-3sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC,根据下列条件,求三角形中其他边和角的大小.
(1)A=60°,B=45°,a=10;
(2)a=3,b=4,A=30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在数列{an}中,a1=1,a2=3,an+2=3an+1-kan(k≠0)对任意n∈N*成立,且{an+1-an}是等比数列.
(1)求实数k的值及数列{an}的通项公式;
(2)设bn=log2(an+1),cn=$\frac{1}{{b}_{n}{b}_{n+1}}$,dn=$\frac{{b}_{n+3}}{{b}_{n}{b}_{n+1}({a}_{n+1}+1)}$,记数列{cn}的前n项和为Pn,数列{dn}的前n项和为Qn
①若对n∈N*,Pn≤k(n+4)恒成立,求实数k的取值范围;
②求证:Qn<Pn(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元)12345
销售收益y(单位:万元)2327
表中的数据显示,与y之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算y关于的回归方程.
回归直线的斜率和截距的最小二乘估计公式分别为$\frac{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=2x+1的反函数是(  )
A.y=logx2+1,x>0且x≠1B.y=log2x+1,x>0
C.y=log2x-1,x>0D.y=log2(x-1),x>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设全集U=R,若集合A={x|$\frac{x-1}{4-x}$≥0},B={x|log2x≤2},则A∩B=(  )
A.{x|x<4}B.{x|x≤4}C.{x|1≤x<4}D.{x|1≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设定义在R上的可导函数f(x)的导函数为f′(x),若f(3)=1,且3f(x)+xf′(x)>ln(x+1),则不等式(x-2017)3f(x-2017)-27>0的解集为(  )
A.(2014,+∞)B.(0,2014)C.(0,2020)D.(2020,+∞)

查看答案和解析>>

同步练习册答案