精英家教网 > 高中数学 > 题目详情
20.函数y=2x+1的反函数是(  )
A.y=logx2+1,x>0且x≠1B.y=log2x+1,x>0
C.y=log2x-1,x>0D.y=log2(x-1),x>1

分析 将y=2x+1作为方程利用指数式和对数式的互化解出x,然后确定原函数的值域即得反函数的定义域,从而求出所求.

解答 解:由y=2x+1得x=log2(y-1)且y>1
即:y=log2(x-1),x>1
所以函数y=2x+1的反函数是y=log2(x-1)(x>1)
故选D.

点评 本题主要考查了反函数,以及指数式与对数式的互化,同时考查了运算求解的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.${∫}_{0}^{π}$(cosx+2)dx等于(  )
A.B.0C.π+2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点,A是相应的顶点,P是y轴上的点,满足∠FPA=α,则双曲线的离心率的最小值为$\frac{1+sinα}{1-sinα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,且四边形ABCD为菱形,F为棱BB1的中点,N为线段AC1的中点.
(1)求证:直线MF∥平面ABCD;
(2)求证:平面AFC1⊥平面ACC1A1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4(m∈R),则直线l过的定点及直线与圆相交得的最短弦长分别为(  )
A.(3,1),$4\sqrt{5}$B.(2,1),$4\sqrt{5}$C.(-3,1),$4\sqrt{3}$D.(2,-1),3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.方程${2^{{{log}_3}x}}=\frac{1}{4}$的解为(  )
A.9B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,三个内角∠A,∠B,∠C所对的边分别为a,b,c,且A:B:C=1:2:3,则a:b:c=(  )
A.3:2:1B.2:$\sqrt{3}$:1C.1:2:3D.1:$\sqrt{3}$:2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{lnx}{x}$-$\frac{k}{x}$(k∈R).
(1)若曲线y=f(x)在点(1,f(1))处的切线斜率为10,求函数f(x)的最大值;
(2)若不等式x2f(x)+$\frac{1}{x+1}$≥0与k≥$\frac{1}{2}$x2+(e2-2)x-ex-7在[1,+∞)上均恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>1}\\{(\frac{1}{2})^{x},x≤1}\end{array}\right.$,则f(f(-$\frac{1}{2}$))=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

同步练习册答案