精英家教网 > 高中数学 > 题目详情
15.已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4(m∈R),则直线l过的定点及直线与圆相交得的最短弦长分别为(  )
A.(3,1),$4\sqrt{5}$B.(2,1),$4\sqrt{5}$C.(-3,1),$4\sqrt{3}$D.(2,-1),3$\sqrt{3}$

分析 (1)通过直线l转化为直线系,求出直线恒过的定点;
(2)说明直线l被圆C截得的弦长最小时,圆心与定点连线与直线l垂直,求出斜率即可求出m的值,再由勾股定理即可得到最短弦长.

解答 解(1):将直线化为直线束方程:x+y-4+(2x+y-7)=0.
联立方程x+y-4=0与2x+y-7=0,得点(3,1);
将点(3,1)代入直线方程,不论m为何值时都满足方程,所以直线l恒过定点(3,1);
(2)当直线l垂直于圆心与定点(3,1)所在直线时弦长最短,
斜率为2,代入方程得m=-$\frac{3}{4}$,此时直线l方程为2x-y-5=0,圆心到直线的距离为$\sqrt{5}$,
所以最短弦长为4$\sqrt{5}$;
故选:A.

点评 本题考查直线系方程的应用,考查直线与圆的位置关系,考查平面几何知识的运用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=2lnx+ax+\frac{1}{x}({a∈R})$在x=2处的切线经过点(-4,2ln2)
(1)讨论函数f(x)的单调性;
(2)若不等式$\frac{2lnx}{{1-{x^2}}}>m-\frac{1}{x}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若$tan({θ+\frac{π}{4}})=-3$,则2sin2θ-cos2θ=(  )
A.$-\frac{6}{5}$B.$-\frac{7}{5}$C.$\frac{6}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在数列{an}中,a1=1,a2=3,an+2=3an+1-kan(k≠0)对任意n∈N*成立,且{an+1-an}是等比数列.
(1)求实数k的值及数列{an}的通项公式;
(2)设bn=log2(an+1),cn=$\frac{1}{{b}_{n}{b}_{n+1}}$,dn=$\frac{{b}_{n+3}}{{b}_{n}{b}_{n+1}({a}_{n+1}+1)}$,记数列{cn}的前n项和为Pn,数列{dn}的前n项和为Qn
①若对n∈N*,Pn≤k(n+4)恒成立,求实数k的取值范围;
②求证:Qn<Pn(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.对于函数f(x)与g(x),若存在λ∈{x∈R|f(x)=0},μ∈{x∈R|g(x)=0},使得|λ-μ|≤1,则称函数f(x)与g(x)互为“零点密切函数”,现已知函数f(x)=ex-2+x-3与g(x)=x2-ax-x+4互为“零点密切函数”,则实数a的取值范围是[3,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=2x+1的反函数是(  )
A.y=logx2+1,x>0且x≠1B.y=log2x+1,x>0
C.y=log2x-1,x>0D.y=log2(x-1),x>1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x2+y2≤1,则|x2+2xy-y2|的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若抛物线y=$\frac{1}{4}$x2上一点P到焦点F的距离为5,则P点的坐标是(  )
A.(4,±4)B.(±4,4)C.(±$\frac{79}{16}$,$\frac{\sqrt{79}}{8}$)D.(±$\frac{\sqrt{79}}{8}$,$\frac{79}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,网格纸的小正方形的边长是1,粗线画出的是一个几何体的三视图,则这个几何体的体积为2.

查看答案和解析>>

同步练习册答案