精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\frac{lnx}{x}$-$\frac{k}{x}$(k∈R).
(1)若曲线y=f(x)在点(1,f(1))处的切线斜率为10,求函数f(x)的最大值;
(2)若不等式x2f(x)+$\frac{1}{x+1}$≥0与k≥$\frac{1}{2}$x2+(e2-2)x-ex-7在[1,+∞)上均恒成立,求实数k的取值范围.

分析 (1)若曲线y=f(x)在点(1,f(1))处的切线斜率为10,求出k,即可求函数f(x)的最大值;
(2)若不等式x2f(x)+$\frac{1}{x+1}$≥0与k≥$\frac{1}{2}$x2+(e2-2)x-ex-7在[1,+∞)上均恒成立,分别求出k的范围,即可求实数k的取值范围.

解答 解:(1)f′(x)=$\frac{1-lnx+k}{{x}^{2}}$,
∵曲线y=f(x)在点(1,f(1))处的切线斜率为10,
∴1+k=10,∴k=9,
∴f′(x)=$\frac{10-lnx}{{x}^{2}}$,
0<x<e10,f′(x)>0,函数单调递增,x>e10,f′(x)<0,函数单调递减,
∴x=e10,函数f(x)的最大值为$\frac{1}{{e}^{10}}$;
(2)不等式x2f(x)+$\frac{1}{x+1}$≥0,可化为k≤lnx+$\frac{1}{x(x+1)}$,
令h(x)=lnx+$\frac{1}{x(x+1)}$,则在[1,+∞)上h′(x)=$\frac{{x}^{3}+2{x}^{2}-x-1}{{x}^{2}(x+1)^{2}}$>0,函数单调递增,
∴k≤h(1)=$\frac{1}{2}$;
令g(x)=$\frac{1}{2}$x2+(e2-2)x-ex-7,则在[1,2)上g′(x)=x+(e2-2)-ex>0,函数单调递减,
(2,+∞)上函数单调递增,∴k≥g(2)=e2-9,
综上所述,e2-9≤k≤$\frac{1}{2}$.

点评 本题考查导数知识的综合运用,考查导数的几何意义,考查函数的单调性,考查学生分析解决问题的能力,难度大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.(1)设全集U={x|x≤4},集合A={x|x2-x-6<0},集合B={x|-3<x≤3},求(∁UA)∩B.
(2)当tanα=3,求$\frac{sinα+cosα}{sinα-cosα}$,cos2α-3sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=2x+1的反函数是(  )
A.y=logx2+1,x>0且x≠1B.y=log2x+1,x>0
C.y=log2x-1,x>0D.y=log2(x-1),x>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设全集U=R,若集合A={x|$\frac{x-1}{4-x}$≥0},B={x|log2x≤2},则A∩B=(  )
A.{x|x<4}B.{x|x≤4}C.{x|1≤x<4}D.{x|1≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若抛物线y=$\frac{1}{4}$x2上一点P到焦点F的距离为5,则P点的坐标是(  )
A.(4,±4)B.(±4,4)C.(±$\frac{79}{16}$,$\frac{\sqrt{79}}{8}$)D.(±$\frac{\sqrt{79}}{8}$,$\frac{79}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知-π<x<0,$sinx+cosx=\frac{1}{5}$.
(1)求sinx-cosx的值; 
(2)求$\frac{3si{n}^{2}\frac{x}{2}-2sin\frac{x}{2}cos\frac{x}{2}+co{s}^{2}\frac{x}{2}}{tanx+\frac{1}{tanx}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示,△DEF中,已知DE=DF,点M在直线EF上从左到右运动(点M不与E、F重合),对于M的每一个位置(x,0),记△DEM的外接圆面积与△DMF的外接圆面积的比值为f(x),那么函数y=f(x)的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设定义在R上的可导函数f(x)的导函数为f′(x),若f(3)=1,且3f(x)+xf′(x)>ln(x+1),则不等式(x-2017)3f(x-2017)-27>0的解集为(  )
A.(2014,+∞)B.(0,2014)C.(0,2020)D.(2020,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若0<x<y<1,则(  )
A.3y<3xB.log0.5x<log0.5yC.cosx<cosyD.sinx<siny

查看答案和解析>>

同步练习册答案