精英家教网 > 高中数学 > 题目详情
14.已知-π<x<0,$sinx+cosx=\frac{1}{5}$.
(1)求sinx-cosx的值; 
(2)求$\frac{3si{n}^{2}\frac{x}{2}-2sin\frac{x}{2}cos\frac{x}{2}+co{s}^{2}\frac{x}{2}}{tanx+\frac{1}{tanx}}$的值.

分析 (1)利用同角三角函数的基本关系求得x为第四象限角,2sinxcosx=-$\frac{24}{25}$,再根据 sinx-cosx=-$\sqrt{{(sinx-cosx)}^{2}}$,计算求得结果.
(2)由条件求得sinx+cosx和sinx-cosx的值,可得sinx和cosx、tanx的值,从而求得要求式子的值.

解答 解:(1)∵-π<x<0,$sinx+cosx=\frac{1}{5}$,∴1+2sinxcosx=$\frac{1}{25}$,
∴2sinxcosx=-$\frac{24}{25}$,故x为第四象限角,sinx<0,cosx>0,
∴sinx-cosx=-$\sqrt{{(sinx-cosx)}^{2}}$=-$\sqrt{1-2sinxcosx}$=-$\frac{7}{5}$.
(2)由(1)可得sinx-cosx=-$\frac{7}{5}$,$sinx+cosx=\frac{1}{5}$,
∴sinx=-$\frac{3}{5}$,cosx=$\frac{4}{5}$,tanx=-$\frac{3}{4}$,
$\frac{3si{n}^{2}\frac{x}{2}-2sin\frac{x}{2}cos\frac{x}{2}+co{s}^{2}\frac{x}{2}}{tanx+\frac{1}{tanx}}$=$\frac{3•\frac{1-cosx}{2}-sinx+\frac{1+cosx}{2}}{tanx+\frac{1}{tanx}}$=$\frac{2-cosx-sinx}{tanx+\frac{1}{tanx}}$
=$\frac{2-\frac{4}{5}+\frac{3}{5}}{-\frac{3}{4}-\frac{4}{3}}$=-$\frac{108}{125}$.

点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某地在建造游泳池时需建造附属室外蓄水池,蓄水池要求容积为300m3,深为3m.如果池底每平方米的造价为120元,池壁每平方米的造价为100元,那么怎样设计水池的底面的长和宽,才能使蓄水池总造价最低?最低总造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.方程${2^{{{log}_3}x}}=\frac{1}{4}$的解为(  )
A.9B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图画的某几何体的三视图,网格纸上小正方形的边长为1,则该几何体的表面积为(  )
A.$144+2\sqrt{10}π$B.$144+({2\sqrt{10}-2})π$C.$128+2\sqrt{10}π$D.$128+({2\sqrt{10}-2})π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{lnx}{x}$-$\frac{k}{x}$(k∈R).
(1)若曲线y=f(x)在点(1,f(1))处的切线斜率为10,求函数f(x)的最大值;
(2)若不等式x2f(x)+$\frac{1}{x+1}$≥0与k≥$\frac{1}{2}$x2+(e2-2)x-ex-7在[1,+∞)上均恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{32}{3}$B.$\frac{{16\sqrt{3}}}{3}$C.$\frac{{32\sqrt{3}}}{3}$D.$\frac{{64\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某校为了解学生对正在进行的一项教学改革的态度,从500名高一学生和400名高二学生中按分层抽样的方式抽取了45名学生进行问卷调查,结果可以分成以下三类:支持、反对、无所谓,调查结果统计如下:
 支持无所谓反对
高一年级18x2
高二年级106y
(1)(i)求出表中的x,y的值;
(ii)从反对的同学中随机选取2人进一步了解情况,求恰好高一、高二各1人的概率;
(2)根据表格统计的数据,完成下面的2×2的列联表,并判断是否有90%的把握认为持支持与就读年级有关.(不支持包括无所谓和反对)
 高一年级高二年级总计
支持 
 不支持
总计   
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.100.050.01
k02.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.
(1)若从10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;
(2)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.{an}是无穷数列,若{an}是二项式(1+2x)n(n∈N+)展开式各项系数和,则$\underset{lim}{n→∞}$($\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$)=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案