精英家教网 > 高中数学 > 题目详情
4.某地在建造游泳池时需建造附属室外蓄水池,蓄水池要求容积为300m3,深为3m.如果池底每平方米的造价为120元,池壁每平方米的造价为100元,那么怎样设计水池的底面的长和宽,才能使蓄水池总造价最低?最低总造价是多少?

分析 设底面的长为xm,宽为ym,蓄水池的总造价为ω元,由题意列出函数的解析式,通过基本不等式求解函数的最值即可.

解答 解:设底面的长为xm,宽为ym,蓄水池总造价为ω元.
则$ω=120×\frac{300}{3}+100(2×3x+2×3y)=12000+600(x+y)$.
又3xy=300,xy=100,
所以ω=12000+600(x+y)≥12000+600×$2\sqrt{xy}$=24000,
所以当设计水池的底面的长和宽均为10m时,使蓄水池总造价最低,最低造价是24000元.

点评 本题考查实际问题的应用,基本不等式求解函数的最值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设Sn为数列{an}的前n项和,给出如下数列:
①5,3,1,-1,-3,-5,-7,…;
②-14,-10,-6,-2,2,6,10,14,18,….
(1)对于数列①,计算S1,S2,S4,S5;对于数列②,计算S1,S3,S5,S7
(2)根据上述结果,对于存在正整数k,满足ak+ak+1=0的这一类等差数列{an}前n项和的规律,猜想一个正确的结论,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.我国南宋数学家秦九韶(约公元1202-1261年)给出了求n(n∈N*)次多项式anxn+an-1xn-1+…+a1x+a0,当x=x0时的值的一种简捷算法.该算法被后人命名为“秦九韶算法”,例如,可将3次多项式改写为a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0,然后进行求值.运行如图所示的程序框图,能求得多项式(  )的值.
A.x4+x3+2x2+3x+4B.x4+2x3+3x2+4x+5C.x3+x2+2x+3D.x3+2x2+3x+4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知边长为2$\sqrt{3}$的菱形ABCD中,∠BAD=60°,沿对角边BD折成二面角A-BD-C为120°的四面体ABCD,则四面体的外接球的表面积为28π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)设全集U={x|x≤4},集合A={x|x2-x-6<0},集合B={x|-3<x≤3},求(∁UA)∩B.
(2)当tanα=3,求$\frac{sinα+cosα}{sinα-cosα}$,cos2α-3sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一个几何体的三视图如图所示,则该几何体的表面积是32+4$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC,根据下列条件,求三角形中其他边和角的大小.
(1)A=60°,B=45°,a=10;
(2)a=3,b=4,A=30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元)12345
销售收益y(单位:万元)2327
表中的数据显示,与y之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算y关于的回归方程.
回归直线的斜率和截距的最小二乘估计公式分别为$\frac{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知-π<x<0,$sinx+cosx=\frac{1}{5}$.
(1)求sinx-cosx的值; 
(2)求$\frac{3si{n}^{2}\frac{x}{2}-2sin\frac{x}{2}cos\frac{x}{2}+co{s}^{2}\frac{x}{2}}{tanx+\frac{1}{tanx}}$的值.

查看答案和解析>>

同步练习册答案