精英家教网 > 高中数学 > 题目详情
已知sinα+cosα=-
1
5
,α∈(0,π),分别求下列各式的值:
(1)tanα;
(2)
sinαcosα
sin2α-sinαcosα-2cos2α
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:(1)利用同角三角函数基本关系式、三角函数值与角所在象限之间的关系即可得出;
(2)利用“弦化切”及其同角三角函数基本关系式即可得出.
解答: 解:(1)∵sinα+cosα=-
1
5

(sinα+cosα)2=1+2sinαcosα=
1
25

sinαcosα=-
12
25
<0

又∵α∈(0,π),
∴sinα>0,cosα<0,
∴sinα-cosα>0,
sinα-cosα=
(sinα-cosα)2
=
1-2sinαcosα
=
7
5

可求得sinα=
3
5
 ,cosα=-
4
5
,tanα=-
3
4

(2)
sinαcosα
sin2α-sinαcosα-2cos2α
=
tanα
tan2α-tanα-2
=
12
11
点评:本题考查了同角三角函数基本关系式、三角函数值与角所在象限之间的关系、“弦化切”,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}满足:a1=1,an+1=2an+1(n∈N*
(Ⅰ)证明数列{an+1}为等比数列,并求出数列{an}的通项公式;
(Ⅱ)若bn=log2(an+1),求数列{
1
bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
1
x

(1)判断f(x)在区间(1,+∞)上的单调性,并用定义证明;
(2)当x∈(-∞,0)时,写出函数f(x)=x+
1
x
的单调区间(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,f(logax)=
a
a2-1
(x-x-1).
(1)求f(x)的解析式;
(2)判断f(x)的奇偶性与单调性;
(3)对于f(x),当x∈(-1,1)时,f(1-m)+f(1-2m)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大小;  
(2)若a=4,求b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;
②设p、q为简单命题,若“p∨q”为假命题,则“?p∧?q为真命题”;
③若p(x)=ax2+2x+1,则“?x∈R,p(x)>0是真命题”的充要条件为a>1;
④若函数f(x)为R上的奇函数,当a≥0,f(x)=3x+3x+a|,则f(-2)=-14;
⑤不等式
x+5
(x-1)2
≥2的解集是[-
1
2
,3].
其中所有正确的说法序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(log2x)=
x2-2x+1

(1)求f(x)的解析式;
(2)求y=f(x)的单调区间;
(3)比较f(x+1)与f(x)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知无穷数列{an]满足:a1=1,2a2=a1+a3,且对于任意n∈N*,都有an>0,a2n+1=anan+2+4.
(1)求a2,a3,a4的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足:a1=1,且an+1=
1
2
an+
1
2n-1
(n∈N*),那么这个数列的通项公式是
 

查看答案和解析>>

同步练习册答案