精英家教网 > 高中数学 > 题目详情

如图,函数f(x)=x+的定义域为(0,+∞).设点P是函数图象上任一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M,N.

(1)证明:|PM|·|PN|为定值;

(2)O为坐标原点,求四边形OMPN面积的最小值.

 

(1)见解析 (2)+1

【解析】【解析】
(1)设P(x0,x0+)(x0>0),

则|PN|=x0,|PM|=,因此|PM|·|PN|=1.

(2)连接OP,直线PM的方程为y-x0-=-(x-x0),

即y=-x+2x0+

解方程组

得x=y=x0+,∴|OM|=x0+

S四边形OMPN=S△NPO+S△OPM

|PN|·|ON|+|PM|·|OM|

x0(x0+)+ (x0+)

()≥+1.

当且仅当x0=,即x0=1时等号成立,因此四边形OMPN面积的最小值为+1.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-7抛物线(解析版) 题型:填空题

设斜率为1的直线l过抛物线y2=ax(a>0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为8,则a的值为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-4直线与圆、圆与圆的位置关系(解析版) 题型:选择题

直线ax+by+c=0与圆x2+y2=9相交于两点M、N,若c2=a2+b2,则·(O为坐标原点)等于(  )

A.-7 B.-14 C.7 D.14

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-3圆的方程(解析版) 题型:解答题

已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4,半径小于5.

(1)求直线PQ与圆C的方程;

(2)若直线l∥PQ,且l与圆C交于点A,B,且以线段AB为直径的圆经过坐标原点,求直线l的方程.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-3圆的方程(解析版) 题型:选择题

过点M(1,2)的直线l将圆(x-2)2+y2=9分成两段弧,当其中的劣弧最短时,直线的方程是(  )

A.x=1 B.y=1

C.x-y+1=0 D.x-2y+3=0

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-2直线的交点坐标与距离公式(解析版) 题型:解答题

已知直线l经过直线2x+y-5=0与x-2y=0的交点.

(1)点A(5,0)到l的距离为3,求l的方程;

(2)求点A(5,0)到l的距离的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-2直线的交点坐标与距离公式(解析版) 题型:选择题

已知点P在y=x2上,且点P到直线y=x的距离为,这样的点P的个数是(  )

A.1 B.2 C.3 D.4

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-1直线的倾斜角与斜率、直线方程(解析版) 题型:选择题

已知直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则a的值是(  )

A.1 B.-1 C.-2或-1 D.-2或1

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:选择题

如图(a),在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为H,如图(b)所示,那么,在四面体A-EFH中必有(  )

A.AH⊥△EFH所在平面

B.AG⊥△EFH所在平面

C.HF⊥△AEF所在平面

D.HG⊥△AEF所在平面

 

查看答案和解析>>

同步练习册答案