精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

已知函数

(1)判断其奇偶性;

(2)指出该函数在区间上的单调性并证明;

(3)利用(1)和(2)的结论,指出该函数在上的增减性.(不用证明)

 

【答案】

(1)是奇函数;(2)上是增函数。(3)由于上的奇函数,在上又是增函数,因而该函数在上也是增函数。

【解析】本题考查的知识点是函数奇偶性的判断,函数单调性的判断与证明,其中掌握函数奇偶性与单调性的定义及判定方法是解答本题的关键.

(1)由已知易判断出函数的定义域为R,关于原点对称,再判断f(-x)与f(x)的关系,即可根据函数奇偶性的定义,进行判断得到结论;

(2)任取x1、x2满足0<x1<x2<1,并做出f(x1)-f(x2)的差,利用实数的性质,判断出f(x1)与f(x2)的大小,根据函数单调性的定义,即可得到答案;

(3)由(1)可得函数为奇函数,由(2)可得函数在(0,1)上为增函数,根据奇函数在对称区间上单调性相同,即可得到答案.

解:(1)函数的定义域为…………. 2分

是奇函数…………. 4分

(2)函数上是增函数

证明:设,则

…………. 8分

因此函数上是增函数………. 10分

(3)由于上的奇函数,在上又是增函数,因而该函数在

也是增函数………. 12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案