精英家教网 > 高中数学 > 题目详情
2.设函数g(x)是定义在R上的可导函数,其导函数为g′(x),且3g(x)+xg′(x)>0恒成立,则不等式(x-2015)3g(x-2015)+8g(-2)>0的解集为(  )
A.(-∞,-2013)B.(-2013,0)C.(2013,+∞)D.(0,2013)

分析 构造函数y=x3g(x),确定x3g(x)在R上是增函数,(x-2015)3g(x-2015)+8g(-2)>0可化为(x-2015)3g(x-2015)>(-2)3g(-2),即可得出结论.

解答 解:构造函数y=x3g(x),则y′=3x2g(x)+x3g′(x)=x2(3g(x)+xg′(x)],
∵3g(x)+xg′(x)>0恒成立,
∴y′>0,
∴x3g(x)在R上是增函数,
(x-2015)3g(x-2015)+8g(-2)>0可化为(x-2015)3g(x-2015)>(-2)3g(-2),
∴x-2015>-2,
∴x>2013,
故选:C.

点评 本题考查利用倒数研究函数的单调性,考查学生解不等式的能力,正确构造函数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设集合M={-1,1},N={x|ax=1}若N⊆M,则实数a的值为(  )
A.-1B.1C.-1或1D.0或-1或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知lgx+lgy=2lg(x-2y),求log${\;}_{\sqrt{2}}$$\frac{x}{y}$的值;
(2)已知1og189=a,18b=5,试用a,b表示log365.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=$\frac{{x}^{2}+2x+a}{x}$对任意x∈[1,+∞),f(x)≥0恒成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系中画出下列双曲线的草图,并求实轴和虚轴的长、焦距、离心率.
(1)$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1;
(2)16x2-9y2=-144.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.将下列指数式与对数式互化:
(1)log216=4
(2)${log}_{\frac{1}{3}}$27=-3
(3)43=64
(4)$(\frac{1}{4})$-2=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.点M是圆x2+y2-4x=0上一动点,点N(-4,4),动点P是线段MN的三等分点(靠近点N),求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.y=f(x2)+f2(2x),求y′.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若f(x)=5-3x(2<x≤4),则f(x)的值域为(  )
A.RB.[-7,-1)C.(-7,-1]D.{-7,-1}

查看答案和解析>>

同步练习册答案