精英家教网 > 高中数学 > 题目详情
17.在直角坐标系中画出下列双曲线的草图,并求实轴和虚轴的长、焦距、离心率.
(1)$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1;
(2)16x2-9y2=-144.

分析 求出双曲线的几何量,即可求实轴和虚轴的长、焦距、离心率.

解答 解:(1)$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1中a=4,b=3,c=5,∴实轴长为8和虚轴长为6、焦距为10、离心率$\frac{5}{4}$;
(2)16x2-9y2=-144可化为$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1.a=3,b=4,c=5,∴实轴长为6和虚轴长为10、焦距为10、离心率$\frac{5}{3}$.
如图所示.

点评 本题考查双曲线的方程与性质,考查双曲线的图象,正确求出双曲线的几何量是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.(1)若复数z满足(1+i)z=2-i,求|z+i|.
(2)已知函数f(x)=x4+x2-1,g(x)=ax3+x2+b(x∈R),其中a,b∈R.
设F(x)=f(x)+g(x),若对于任意的a∈[-2,2],函数y=F(x)在区间[-1,1]上的值恒为负数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(-x),x<0}\\{0,x=0}\\{f(x-1),x>0}\end{array}\right.$与x-y+m=0有两个交点,则m的范围为(-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若锐角三角形的三边长分别为a-1,a,a+1,则a的取值范围是(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等比数列{an}中,a1-a3+a5=2,a3-a5+a7=5,那么a5-a7+a9=(  )
A.8B.15C.25D.$\frac{25}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数g(x)是定义在R上的可导函数,其导函数为g′(x),且3g(x)+xg′(x)>0恒成立,则不等式(x-2015)3g(x-2015)+8g(-2)>0的解集为(  )
A.(-∞,-2013)B.(-2013,0)C.(2013,+∞)D.(0,2013)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知AB是抛物线y2=4x的焦点弦,其端点A,B坐标分别为(x1,y1),(x2,y2)且满足x1+x2=6,则直线AB的斜率是±1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=x2+6x+1,若关于x的不等式f(x)<m在[-5,-2]上恒成立,则实数m的取值范围是(-4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知约束条件$\left\{\begin{array}{l}{x-3y+4≥0}\\{x+2y-1≥0}\\{3x+y-8≤0}\end{array}\right.$,且目标函数z=a2x+(a-2-a2)y取得最小值的最优解唯一,为(2,2),则a的取值范围是($\frac{-1-\sqrt{17}}{4},\frac{-1+\sqrt{17}}{4}$).

查看答案和解析>>

同步练习册答案