精英家教网 > 高中数学 > 题目详情
9.已知AB是抛物线y2=4x的焦点弦,其端点A,B坐标分别为(x1,y1),(x2,y2)且满足x1+x2=6,则直线AB的斜率是±1.

分析 求得抛物线的焦点,由中点坐标公式可得中点M的坐标,再由直线的斜率公式,结合点在抛物线上,满足方程,计算即可得到所求直线的斜率.

解答 解:抛物线y2=4x的焦点F为(1,0),
由题意可得AB的中点M的横坐标为3,
设M(3,t),
又kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{{y}_{1}-{y}_{2}}{\frac{{{y}_{1}}^{2}}{4}-\frac{{{y}_{2}}^{2}}{4}}$=$\frac{4}{{y}_{1}+{y}_{2}}$=$\frac{4}{2t}$=$\frac{2}{t}$,
又kAB=$\frac{t}{2}$,
由$\frac{t}{2}$=$\frac{2}{t}$,解得t=±2,
即有AB的斜率为±1.
故答案为:±1.

点评 本题考查抛物线的方程和性质,考查直线的斜率公式的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.关于下列命题:
①设直线2x+3y+1=0和圆x2+y2-2x-3=0相交于A,B,则弦AB的垂直平分线方程是3x-2y-3=0.
②若数列{an}的前n项和Sn=(n+1)2,则{an}是等差数列;
③a,b,c是空间三条不同的直线,c是直线a在平面α内的射影,且b?a,a?α,若b⊥c则a⊥b;
④已知向量$\overrightarrow{a}=(t,2),\overrightarrow{b}$=(-3,6),若向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角,则实数t的取值范围是t<4;
⑤若定义在R上的函数f(x)满足f(x+2)=f(x+1)-f(x),函数f(x)为奇函数,且f(1)=0,则在区间[-5,5]上f(x)至少有11个零点.
其中正确命题的序号是①③⑤(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.既要使关于x的不等式x2+(m-$\frac{1}{2}$)x-$\frac{7}{16}$≤0有实数解,又要使关于x的方程(2m+3)x2+mx+$\frac{m-2}{4}$=0有实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系中画出下列双曲线的草图,并求实轴和虚轴的长、焦距、离心率.
(1)$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1;
(2)16x2-9y2=-144.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(1og2x)=x-$\frac{1}{x}$.
(1)求f(x)的解析式;
(2)求证:函数f(x)为奇函数;
(3)若实数m满足:f(1-m)+f(1-m2)<0.求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.点M是圆x2+y2-4x=0上一动点,点N(-4,4),动点P是线段MN的三等分点(靠近点N),求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知p:函数y=lg(x2+mx+1)的值域为R.q:函数y=lg[4x2+4(m-2)x+1]的定义域为R.若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=($\frac{1}{4}$)${\;}^{{x}^{2}-x}$的值域为(  )
A.(-∞,$\sqrt{2}$]B.(0,$\sqrt{2}$]C.[$\sqrt{3}$,+∞)D.(0,$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知无穷等比数列{an}中,a1=1,公比为q(q>0),Sn是数列的前n项的和,记Tn=a2+a4+a6+…+a2n,求$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{T}_{n}}$的值.

查看答案和解析>>

同步练习册答案