精英家教网 > 高中数学 > 题目详情
3.若圆x2+y2-2kx+2y+2=0(k>0)与两坐标轴无公共点,那么实数k的取值范围是(  )
A.0<k<$\sqrt{2}$B.1<k<$\sqrt{2}$C.0<k<1D.k>$\sqrt{2}$

分析 求出它的圆心与半径,利用圆心到坐标轴的距离对于半径,列出关系式即可求出k的范围.

解答 解:圆x2+y2-2kx+2y+2=0(k>0)的圆心(k,-1),半径为:$\sqrt{{k}^{2}-1}$,
圆x2+y2-2kx+2y+2=0(k>0)与两坐标轴无公共点,
所以$\sqrt{{k}^{2}-1}$<1,解得1<k<$\sqrt{2}$,
故选:B.

点评 本题考查圆的一般方程的应用,直线与圆的位置关系的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.直线xcos140°+ysin140°-2=0的倾斜角是(  )
A.40°B.50°C.130°D.140°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(1+a)x-$\frac{1}{2}$x2-alnx.
(1)求函数f(x)的单调区间;
(2)证明:m、n∈N*时,m(m+n)[$\frac{1}{ln(m+n)}$+$\frac{1}{ln(m+n-1)}$+$\frac{1}{ln(m+n-2)}$+…+$\frac{1}{ln(m+1)}$]>n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在平面直角坐标系中,不等式组$\left\{\begin{array}{l}{x-1≤0}\\{x+y≥0}\\{x-y+4≥0}\end{array}\right.$,表示的平面区域的面积是(  )
A.3B.$\frac{9}{2}$C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow{a}$=(-3,2),$\overrightarrow{b}$=(-1,0),向量λ$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$垂直,则实数λ的值为(  )
A.$\frac{1}{7}$B.-$\frac{1}{7}$C.$\frac{1}{6}$D.-$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:
应该取消应该保留无所谓
在校学生2100人120人y人
社会人士600人x人z人
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-7.8)0-(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}$+($\frac{2}{3}$)-2  
(2)($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$•$\frac{(\sqrt{4a{b}^{-1}})^{3}}{0.{1}^{-2}({a}^{3}{b}^{-3})^{\frac{1}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.根据如图所示的伪代码,最后输出的值为205.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知A={x|-3≤x≤4},B={m-1≤x≤m+1},B⊆A,则m∈[-2,3].

查看答案和解析>>

同步练习册答案