精英家教网 > 高中数学 > 题目详情
8.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:
应该取消应该保留无所谓
在校学生2100人120人y人
社会人士600人x人z人
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.

分析 (1)频率即为概率,由题意得$\frac{120+x}{3600}=0.05$,由此求出x,从而得到持“无所谓”态度的人数,由此能求出按分层抽样应在持“无所谓”态度的人中抽取的人数.
(2)由(1)知持“应该保留”态度的人一共有180人,按分层抽样得到在所抽取的6人中,在校学生为4人,社会人员为2人,从而得到第一组在校学生人数ξ的所有可能取值为1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.

解答 解:(1)频率即为概率,∴由题意得$\frac{120+x}{3600}=0.05$,
解得x=60,
∴持“无所谓”态度的人数共有:3600-2100-120-600-60=720,
∴按分层抽样应在持“无所谓”态度的人中抽取:720×$\frac{360}{3600}$=72人.
(2)由(1)知持“应该保留”态度的人一共有180人,
按分层抽样得到在所抽取的6人中,
在校学生为$\frac{120}{180}×6=4$人,
社会人员为$\frac{60}{180}×6=2$人,
将这6人平均分成2组,
则第一组在校学生人数ξ的所有可能取值为1,2,3,
P(ξ=1)=$\frac{{C}_{4}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
P(ξ=2)=$\frac{{C}_{4}^{2}{C}_{2}^{1}}{{C}_{6}^{3}}$=$\frac{3}{5}$,
P(ξ=3)=$\frac{{C}_{4}^{2}{C}_{2}^{0}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
∴ξ的分布列为:

 ξ 1 2 3
 P $\frac{1}{5}$ $\frac{3}{5}$ $\frac{1}{5}$
Eξ=$1×\frac{1}{5}+2×\frac{3}{5}+3×\frac{1}{5}$=2.

点评 本题考查分层抽样的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.直线l过点A(3,2)与圆x2+y2-4x+3=0相切,则直线l的方程为x=3或3x-4y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax2-(5a-1)x+3a+1(a∈R).
(1)若f(x)在区间[1,+∞)上是单调增函数,求a的取值范围;
(2)在(1)的条件下,若函数f(x)在区间[1,5]上有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}的前n项和为Sn,且a3=2a7,S4=17
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若圆x2+y2-2kx+2y+2=0(k>0)与两坐标轴无公共点,那么实数k的取值范围是(  )
A.0<k<$\sqrt{2}$B.1<k<$\sqrt{2}$C.0<k<1D.k>$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(-x)+f(x+3)=0;当x∈(0,3)时,f(x)=$\frac{elnx}{x}$,其中e是自然对数的底数,且e≈2.72,则方程6f(x)-x=0在[-9,9]上的解的个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列各式的值.
(1)($\frac{9}{16}$)${\;}^{\frac{1}{2}}$+$\root{3}{1000}$-($\frac{64}{27}$)${\;}^{-\frac{1}{3}}$+3•e0;       
(2)$\frac{lg\sqrt{27}+lg8-{log}_48}{\frac{1}{2}lg0.3+lg2}$;
(3)lg25+lg2•lg50.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.双曲线x2-y2=a2(a>0)的两个焦点分别为F1,F2,P为双曲线上任意一点,求证:|PF1|,|PO|,|PF2|成等比数列(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,当k为何值时,
(1)k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$-k$\overrightarrow{b}$垂直;
(2)|k$\overrightarrow{a}$-2$\overrightarrow{b}$|取得最小值?并求出最小值.

查看答案和解析>>

同步练习册答案