精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(-x)+f(x+3)=0;当x∈(0,3)时,f(x)=$\frac{elnx}{x}$,其中e是自然对数的底数,且e≈2.72,则方程6f(x)-x=0在[-9,9]上的解的个数为(  )
A.4B.5C.6D.7

分析 确定f(x)的周期为3,函数在(0,e)上单调递增,在(e,3)上单调递减,在[0,9]上作出y=f(x)的图象,作出y=$\frac{x}{6}$的图象,即可得出结论.

解答 解:当x>0时,f(-x)+f(x+3)=0,∴f(x+3)=-f(-x),
∵f(x)是奇函数,
∴f(x)的周期为3,
当x∈(0,3)时,f(x)=$\frac{elnx}{x}$,∴f′(x)=$\frac{e(1-lnx)}{{x}^{2}}$,
∴函数在(0,e)上单调递增,在(e,3)上单调递减,
在[0,9]上作出y=f(x)的图象,作出y=$\frac{x}{6}$的图象,如图所示

∴在[0,9]上,有3个交点,由对称性,可得方程6f(x)-x=0在[-9,9]上的解的个数为6,
还有f(0)=0,共7个.
故选:D.

点评 本题考查单调性和极值,函数的奇偶、周期性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.某登山队在山脚A处测得山顶B的仰角为45°,沿倾斜角为30°的斜坡前进1000m后到达D处,又测得山顶的仰角为60°,则山的高度BC为$500(\sqrt{3}+1)$m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知等比数列{an}中,an>0,a2=3,a6=12,则a4=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R).
(1)求证:不论m为何值,圆心在同一直线l上;
(2)与l平行的直线中,哪些与圆相交、相切、相离;
(3)求证:任何一条平行于l且与圆相交的直线被各圆截得的弦长相等.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:
应该取消应该保留无所谓
在校学生2100人120人y人
社会人士600人x人z人
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆x2+y2-4x-8y+m=0.
(1)若圆C与直线x+2y-5=0相交于M、N两点,且CM⊥CN(C为圆心),求m的值;
(2)在(1)的条件下,求以MN为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,AB=AC,向量$\overrightarrow{AP}$满足2$\overrightarrow{AP}$=($\overrightarrow{AB}$+$\overrightarrow{AC}$),下列说法正确的是(  )
①$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$;    
②$\overrightarrow{PA}$•($\overrightarrow{AC}$-$\overrightarrow{AB}$)=0;    
③直线AP平分∠A.
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.奇函数y=f(x)在区间[3,7]上是增函数,且最小值为-5,那么f(x)在区间[-7,-3]上(  )
A.是增函数且最小值为5B.是增函数且最大值为5
C.是减函数且最小值为5D.是减函数且最大值为5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=$\frac{lg(x+1)}{x-1}$的定义域为(-1,1)∪(1,+∞).

查看答案和解析>>

同步练习册答案