精英家教网 > 高中数学 > 题目详情
2.奇函数y=f(x)在区间[3,7]上是增函数,且最小值为-5,那么f(x)在区间[-7,-3]上(  )
A.是增函数且最小值为5B.是增函数且最大值为5
C.是减函数且最小值为5D.是减函数且最大值为5

分析 由奇函数在关于原点对称的区间上单调性一致及奇函数定义可选出正确答案.

解答 解:因为奇函数f(x)在区间[3,7]上是增函数,
所以f(x)在区间[-7,-3]上也是增函数,
且奇函数f(x)在区间[3,7]上有f(3)min=-5,
则f(x)在区间[-7,-3]上有f(-3)max=-f(3)=5,
故选:B.

点评 本题考查奇函数的定义及在关于原点对称的区间上单调性的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列推理错误的是(  )
A.A∈l,A∈α,B∈l,B∈α⇒l?αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=AB
C.l?α,A∈l⇒A∉αD.A∈l,l?α⇒A∈α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(-x)+f(x+3)=0;当x∈(0,3)时,f(x)=$\frac{elnx}{x}$,其中e是自然对数的底数,且e≈2.72,则方程6f(x)-x=0在[-9,9]上的解的个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.
(1)画出位似中心点O;
(2)求出△ABC与△A′B′C′的位似比;
(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于3:2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.双曲线x2-y2=a2(a>0)的两个焦点分别为F1,F2,P为双曲线上任意一点,求证:|PF1|,|PO|,|PF2|成等比数列(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知幂函数f(x)的图象经过点($\sqrt{3}$,3),则f(2)的值是(  )
A.4B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.(1)不等式ax2+5x-2>0解是$\left\{{\left.x\right|\frac{1}{2}<x<2}\right\}$,解不等式ax2-5x+a2-1>0;
(2)已知关于X的方程(m+3)x2-2mx+m-1=0有一正根,有一负根,且负根的绝对值较大,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.给定映射f:(x,y)→(x+2y,2x-y),则象(3,1)对应的原象为(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.条件“x=0”是条件“ax=1(a>0且a≠1)”的充要条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)

查看答案和解析>>

同步练习册答案