精英家教网 > 高中数学 > 题目详情
3.某登山队在山脚A处测得山顶B的仰角为45°,沿倾斜角为30°的斜坡前进1000m后到达D处,又测得山顶的仰角为60°,则山的高度BC为$500(\sqrt{3}+1)$m.

分析 过点D作DE⊥AC,△ACB是等腰直角三角形,直角△ADE中满足解直角三角形的条件.在直角△BDF中,根据三角函数可得BF,进一步得到BC,即可求出山高.

解答 解:过D分别作DE⊥AC与E,DF⊥BC于F.
∵在Rt△ADE中,AD=1000m,∠DAE=30°,
∴DE=$\frac{1}{2}$AD=500m.
∵∠BAC=45°,
∴∠DAB=45°-30°=15°,∠ABC=90°-45°=45°.
∵在Rt△BDF中,∠BDF=60°,
∴∠DBF=90°-60°=30°,
∴∠DBA=45°-30°=15°,
∵∠DAB=15°,
∴∠DBA=∠DAB,
∴BD=AD=1000m,
∴在Rt△BDF中,BF=$\frac{\sqrt{3}}{2}$BD=500$\sqrt{3}$m,
∴山的高度BC为$500(\sqrt{3}+1)$m.
故答案为:$500(\sqrt{3}+1)$.

点评 本题考查了解直角三角形的应用-仰角俯角问题的应用,根据已知得出FC,BF的长是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.某程序框图如图所示,现输入如下四个函数,其中可以输出的函数是f(x)=sinx.
A、f(x)=x2
B、f(x)=$\frac{1}{x}$
C、f(x)=lnx+2x-6
D、f(x)=sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,某人欲测量某建筑物的高度BC,在A处测得建筑物顶端C的仰角为30°,然后,向建筑物方向前进200m到达D处,在D处测得C的仰角为75°,则建筑物的高度为(  )
A.50($\sqrt{3}$+1)mB.50($\sqrt{2}$+1)mC.50($\sqrt{3}$-1)mD.50($\sqrt{3}$+$\sqrt{2}$) m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,实数m的最大值为k
(1)求实数k;
(2)若a,b,c∈R+,且$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=\frac{k}{20}$,求z=a+2b+3c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.直线l过点A(3,2)与圆x2+y2-4x+3=0相切,则直线l的方程为x=3或3x-4y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)的定义域为(0,+∞),并且满足三个条件:①对任意的x,y∈R+,都有f(x+y)=f(x)f(y);②对任意的x∈R+,都有0<f(x)<1;③f(2)=$\frac{1}{4}$.
(Ⅰ)求f(1),f(3)的值;
(Ⅱ)证明:函数f(x)为区间(0,+∞)上的减函数;
(Ⅲ)解不等式:f(2x)<$\frac{1}{32}$f(-x2+6x-8).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=$\left\{\begin{array}{l}{{4}^{x}(x≤\frac{1}{2})}\\{lo{g}_{a}x(x>\frac{1}{2})}\end{array}\right.$的最大值是2,则a的取值范围是0<a<$\frac{\sqrt{2}}{2}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列推理错误的是(  )
A.A∈l,A∈α,B∈l,B∈α⇒l?αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=AB
C.l?α,A∈l⇒A∉αD.A∈l,l?α⇒A∈α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(-x)+f(x+3)=0;当x∈(0,3)时,f(x)=$\frac{elnx}{x}$,其中e是自然对数的底数,且e≈2.72,则方程6f(x)-x=0在[-9,9]上的解的个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案