精英家教网 > 高中数学 > 题目详情
3.函数y=$\frac{lg(x+1)}{x-1}$的定义域为(-1,1)∪(1,+∞).

分析 利用分母不为0,对数的真数大于0,列出不等式组求解即可.

解答 解:函数y=$\frac{lg(x+1)}{x-1}$有意义,可得:$\left\{\begin{array}{l}x+1>0\\ x-1≠0\end{array}\right.$,
函数的定义域为:(-1,1)∪(1,+∞).
故答案为:(-1,1)∪(1,+∞).

点评 本题考查函数的定义域的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(-x)+f(x+3)=0;当x∈(0,3)时,f(x)=$\frac{elnx}{x}$,其中e是自然对数的底数,且e≈2.72,则方程6f(x)-x=0在[-9,9]上的解的个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.(1)不等式ax2+5x-2>0解是$\left\{{\left.x\right|\frac{1}{2}<x<2}\right\}$,解不等式ax2-5x+a2-1>0;
(2)已知关于X的方程(m+3)x2-2mx+m-1=0有一正根,有一负根,且负根的绝对值较大,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.给定映射f:(x,y)→(x+2y,2x-y),则象(3,1)对应的原象为(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,当k为何值时,
(1)k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$-k$\overrightarrow{b}$垂直;
(2)|k$\overrightarrow{a}$-2$\overrightarrow{b}$|取得最小值?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥P-ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=1,AD=2,PA⊥底面ABCD,PD与底面成30°角.
(1)求证:BC∥平面PAD;
(2)若AE⊥PC,E为垂足,求证:PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线y=kx与双曲线4x2-y2=16不可能(  )
A.相交B.只有一个交点C.相离D.有两个公共点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.条件“x=0”是条件“ax=1(a>0且a≠1)”的充要条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某日用品按行业质量标准分成五个等级,等级系数依次为1,2,3,4,5.现从一批日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如表所示:
等级频数频率
1ca
24b
390.45
420.1
530.15
合计201.00
(1)求a,b,c的值;
(2)从等级为4的2件日用品和等级为5的3件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.

查看答案和解析>>

同步练习册答案