精英家教网 > 高中数学 > 题目详情
6.某校有学生1000人,其中高一学生400人.为调查学生了解消防知识的现状,采用按年级分层抽样的方法,从该校学生中抽取一个40人的样本,那么样本中高一学生的人数为(  )
A.8B.12C.16D.20

分析 设应当从高一年级的学生中抽取的人数是x,则由分层抽样的定义可得$\frac{400}{1000}=\frac{x}{40}$,由此求出x的值.

解答 解:设应当从高一年级的学生中抽取的人数是x,
则由分层抽样的定义可得$\frac{400}{1000}=\frac{x}{40}$,
解得x=16,
故选:C.

点评 本题主要考查分层抽样的定义和方法,各个部分的个体数之比等于各个部分对应的样本数之比,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.甲、乙两名同学在5次英语口语测试中的成绩统计如图的茎叶图所示.
(1)分别在甲乙的5次成绩中任取一次,至少有一个成绩高于80的概率;
(2)若将频率视为概率,对学生甲和乙在今后的两次英语口语竞赛成绩进行预测,记两人成绩都高于85分的次数为ξ,求ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设log83=a,log35=b.试用a、b表示lg5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知2x=log23,则22x+1+2-2x=$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.甲、乙两大超市同时开业,第一年的全年销售额为a万元,由于经营方式不同,甲超市前n年的总销售额为$\frac{a}{2}$(n2-n+2)万元,乙超市第n年的销售额比前一年销售额多$a{(\frac{2}{3})}^{n-1}$万元.
(Ⅰ)求甲、乙两超市第n年销售额的表达式;
(Ⅱ)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=tan$\frac{πx}{4}$,x∈(2,6)的图象与x轴交于A点,过点A的直线l与函数的图象交于B,C两点,则($\overrightarrow{OB}$+$\overrightarrow{OC}$)•$\overrightarrow{OA}$=(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某公司计划2010年在甲乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲乙电视台的广告收费标准分别为500元/分钟和200元/分钟,预计甲乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元,则该公司的最大收益是(  )
A.57万元B.85万元C.70万元D.66万元双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合$A=\{x|\frac{2x-3a-1}{x-2a-2}<1,a>-3\}$,集合B={x|2cos2x+1≥0}
(Ⅰ)当a=-2时,求A∩B;
(Ⅱ)若$A∩B=[-\frac{π}{3},\frac{π}{3}]$,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2ekx
(Ⅰ)当k=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)设g(x)=$\frac{ax}{1+{x}^{2}}$+2(a>0),且对于任意的x1,x2∈[0,2],均有g(x1)≥f(x2)恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案