精英家教网 > 高中数学 > 题目详情
13.设log83=a,log35=b.试用a、b表示lg5.

分析 log83=a,log35=b.可得$\frac{lg3}{3lg2}$=$\frac{lg3}{3(1-lg5)}$=a,$\frac{lg5}{lg3}$=b,消去lg3,解得lg5即可.

解答 解:∵log83=a,log35=b.
∴$\frac{lg3}{3lg2}$=$\frac{lg3}{3(1-lg5)}$=a,$\frac{lg5}{lg3}$=b,
消去lg3,解得lg5=$\frac{3ab}{1+3ab}$.

点评 本题考查了对数的运算性质、对数换底公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数f(x)=lg$\frac{1-x}{1+x}$在区间(-1,1)上是(  )
A.奇函数、增函数B.偶函数、增函数C.奇函数、减函数D.偶函数、减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各函数中,最小值为2的是(  )
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$C.y=$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$D.y=3x+3-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=3${\;}^{{x}^{2}+2x+1}$,g(x)=3${\;}^{2{x}^{2}-4x+5}$,求当f(x)<g(x)时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an},{bn}满足a1=5,an=2an-1+3n-1(n≥2,n∈N*),bn=an-3n(n∈N*
(1)求数列{bn}的通项公式.
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某市统计局就2015年毕业大学生的月收入情况调查了10000人,并根据所得数据画出样本的频率分布直方图所示,每个分组包括左端点,不包括右端点,如第一组表示[2000,2500).

(1)求毕业大学生月收入在[4000,4500)的频率;
(2)根据频率分别直方图算出样本数据的中位数;
(3)为了分析大学生的收入与所学专业、性别等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在[3500,4000)的这段应抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x|x-a|-lnx,若f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某校有学生1000人,其中高一学生400人.为调查学生了解消防知识的现状,采用按年级分层抽样的方法,从该校学生中抽取一个40人的样本,那么样本中高一学生的人数为(  )
A.8B.12C.16D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=loga(x-1)+x-3的图象经过点(5,4)
(1)求实数a的值;
(2)求证:f(x)在其定义域内有且只有一个零点.

查看答案和解析>>

同步练习册答案