精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=ax+sinx在[$\frac{π}{3}$,π]上递增,则实数a的取值范围为(  )
A.(-∞,-$\frac{1}{2}$]B.(-∞,-$\frac{1}{2}$)C.(1,+∞)D.[1,+∞)

分析 求函数的导数,要使函数单调递增,则f′(x)≥0成立,然后求出实数a的取值范围.

解答 解:因为f(x)=sinx+ax,所以f′(x)=cosx+a.
要使函数在[$\frac{π}{3}$,π]上递增单调递增,则f′(x)≥0在[$\frac{π}{3}$,π]上成立.
即cosx+a≥0在[$\frac{π}{3}$,π]上恒成立.
所以a≥-cosx在[$\frac{π}{3}$,π]上成立,
因为在[$\frac{π}{3}$,π]上:-1≤cosx≤$\frac{1}{2}$,
所以a≥1.
故选:D.

点评 本题主要考查导数的基本运算以及利用导数研究函数的单调性,注意当函数单调递增时,f'(x)≥0恒成立,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.化简下列各式.
(1)$\sqrt{1+sinθ}$-$\sqrt{1-sinθ}$($\frac{3π}{2}$<θ<2π)
(2)$\frac{sin(2α+β)}{sinα}$-2cos(α+β)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,AD为BC边上的高,且AD=BC,b,c分别表示角B,C所对的边长,则$\frac{b}{c}$的最大值是(  )
A.2B.$\frac{\sqrt{5}+1}{2}$C.$\sqrt{5}$D.$\frac{\sqrt{5}+3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=xlnx
(1)求函数f(x)的最小值;
(2)设F(x)=x2-a[x+f′(x)]+2x,讨论函数F(x)的单调性;
(3)在第二问的基础上,若方程F(x)=m,(m∈R)有两个不相等的实数根x1,x2,求证:x1+x2>a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(x-a)ex(x∈R),函数g(x)=bx-lnx,其中a∈R,b<0.
(1)若函数g(x)在点(1,g(l))处的切线与直线x+2y-3=0垂直,求b的值;
(2)求函数f(x)在区间[0,1]上的最小值;
(3)若存在区间M,使得函数f(x)和g(x)在区间M上具有相同的单调性,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数$f(x)=\frac{1}{3}{x^3}+a{x^2}+5x+6$在区间[1,3]上单调递减,则实数a的取值范围是(-∞,-3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(a+1)lnx+ax2+1.
(Ⅰ)若函数f(x)在x=1处切线的斜率k=-$\frac{1}{2}$,求实数a的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若xf′(x)≥x2+x+1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示是y=f(x)的导数图象,则正确的判断是(  )
①f(x)在(3,+∞)上是增函数;
②x=1是f(x)的极大值点;
③x=4是f(x)的极小值点;
④f(x)在(-∞,-1)上是减函数.
A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图是函数f(x)=x3+bx2+cx+d的大致图象,则$x_1^{\;}+x_2^{\;}$=$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案