分析 由图象知f(x)=0的根为-1,0,2,求出函数解析式,x1和x2是函数f(x)的极值点,故有x1和x2 是f′(x)=0的根,可结合根与系数求解.
解答 解:∵f(x)=x3+bx2+cx+d,由图象知,-1+b-c+d=0,0+0+0+d=0,8+4b+2c+d=0,
∴d=0,b=-1,c=-2
∴f′(x)=3x2+2bx+c=3x2-2x-2.
由题意有x1和x2是函数f(x)的极值点,故有x1和x2 是f′(x)=0的根,
∴x1+x2=$\frac{2}{3}$,
故答案为:$\frac{2}{3}$.
点评 本题考查一元二次方程根的分布,根与系数的关系,函数在某点取的极值的条件,以及求函数的导数,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{1}{2}$] | B. | (-∞,-$\frac{1}{2}$) | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2016) | B. | (-∞,-2014) | C. | (-∞,-2018) | D. | (-2018,-2014) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [4,+∞) | B. | (4,+∞) | C. | (-∞,4] | D. | (-∞,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4e}{e+1}$ | B. | $\frac{4}{e+1}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com