精英家教网 > 高中数学 > 题目详情
4.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2016)2f(x+2016)-4f(-2)>0的解集为(  )
A.(-∞,-2016)B.(-∞,-2014)C.(-∞,-2018)D.(-2018,-2014)

分析 根据条件,构造函数,利用函数的单调性和导数之间的关系,将不等式进行转化即可得到结论.

解答 解:由2f(x)+xf′(x)>x2,(x<0),
得:2xf(x)+x2f′(x)<x3
即[x2f(x)]′<x3<0,
令F(x)=x2f(x),
则当x<0时,
得F′(x)<0,即F(x)在(-∞,0)上是减函数,
∴F(x+2016)=(x+2016)2f(x+2016),F(-2)=4f(-2),
即不等式等价为F(x+2016)-F(-2)>0,
∵F(x)在(-∞,0)是减函数,
∴由F(x+2016)>F(-2)得,x+2016<-2,
即x<-2018,
故选:C.

点评 本题主要考查不等式的解法,利用条件构造函数,利用函数单调性和导数之间的关系是解决本题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在△ABC中,AD为BC边上的高,且AD=BC,b,c分别表示角B,C所对的边长,则$\frac{b}{c}$的最大值是(  )
A.2B.$\frac{\sqrt{5}+1}{2}$C.$\sqrt{5}$D.$\frac{\sqrt{5}+3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(a+1)lnx+ax2+1.
(Ⅰ)若函数f(x)在x=1处切线的斜率k=-$\frac{1}{2}$,求实数a的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若xf′(x)≥x2+x+1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示是y=f(x)的导数图象,则正确的判断是(  )
①f(x)在(3,+∞)上是增函数;
②x=1是f(x)的极大值点;
③x=4是f(x)的极小值点;
④f(x)在(-∞,-1)上是减函数.
A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx-ax(a∈R)
(1)当a=3时,判断函数g(x)=x2+f(x)的单调性;
(2)若a>0,函数f(x)在x=1的切线l也是曲线x2+y2+2x-8y+9=0的切线,求实数a的值,并写出直线l的方程;
(3)若a=1,证明$|{f(x)}|>\frac{lnx}{x}+\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)的导函数f′(x)的图象如图所示,则函数f(x)的图象只可能是下列各选项中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f′(x)是函数f(x)的导函数,f(x)的图象如图所示,则不等式f(x)•f′(x)>0的解集为(  )
A.(0,2)B.(-∞,0)∪(2,3)C.(-∞,0)∪(3,+∞)D.(0,2)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图是函数f(x)=x3+bx2+cx+d的大致图象,则$x_1^{\;}+x_2^{\;}$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=sin(2x+$\frac{π}{6}$)+$\frac{3}{2}$,x∈R
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调减区间;
(3)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样变换得到?

查看答案和解析>>

同步练习册答案