分析 (1)求出f(x)的导数,得到f′(1)=1-b+1=0,解出即可;(2)求出h(x)的表达式,问题转化为a≥-(x2+x)在[1,2]恒成立,根据函数的单调性求出a的范围即可.
解答 解:(1)∵$f(x)=x+\frac{b}{x}+lnx$,(x>0),
∴f′(x)=1-$\frac{b}{{x}^{2}}$+$\frac{1}{x}$,
∵x=1是$f(x)=x+\frac{b}{x}+lnx$的一个极值点,
∴f′(1)=1-b+1=0,解得:b=2;
(2)由(1)得:f(x)=x+$\frac{2}{x}$+lnx,
∴$h(x)=f(x)-\frac{2+a}{x}$=x+lnx-$\frac{a}{x}$,
h′(x)=1+$\frac{1}{x}$+$\frac{a}{{x}^{2}}$=$\frac{{x}^{2}+x+a}{{x}^{2}}$,
若函数h(x)在区间[1,2]内单调递增,
则x2+x+a≥0在[1,2]恒成立,
故a≥-(x2+x)在[1,2]恒成立,
令m(x)=-(x2+x),x∈[1,2],
m′(x)=-2x-1<0,m(x)在[1,2]递减,
∴m(x)max=m(1)=-2,
故a≥-2.
点评 本题考查了函数的单调性、极值问题,考查导数的应用以及分离参数法求函数的最值问题,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,2) | B. | (-∞,0)∪(2,3) | C. | (-∞,0)∪(3,+∞) | D. | (0,2)∪(3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com