精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数y=f(x)满足f(x+2)=f(x),当-1<x≤1时,f(x)=x3.若函数g(x)=f(x)-loga|x|至少有6个零点,则a的取值范围是( )
A.(1,5)
B.
C.
D.
【答案】分析:函数g(x)=f(x)-loga|x|的零点个数,即函数y=f(x)与y=log5|x|的交点的个数,由函数图象的变换,分别做出y=f(x)与y=loga|x|的图象,结合图象可得loga5≤1 或 loga5≥-1,由此求得a的取值范围.
解答:解:根据题意,函数g(x)=f(x)-loga|x|的零点个数,即函数y=f(x)与y=loga|x|的交点的个数;
f(x+2)=f(x),函数f(x)是周期为2的周期函数,
又由当-1<x≤1时,f(x)=x3,据此可以做出f(x)的图象,
y=loga|x|是偶函数,当x>0时,y=logax,则当x<0时,y=loga(-x),做出y=loga|x|的图象,
结合图象分析可得:要使函数y=f(x)与y=loga|x|至少有6个交点,
则 loga5≤1 或 loga5≥-1,解得 a≥5,或 0<a≤
故选B.
点评:本题考查函数图象的变化与运用,涉及函数的周期性,对数函数的图象等知识点,关键是作出函数的图象,由此分析两个函数图象交点的个数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案