精英家教网 > 高中数学 > 题目详情
设等差数列{an}的前n项和Sn,且a1+a2+a3=4,a7+a8+a9=16,则S9=(  )
A、28B、30C、42D、48
分析:根据等差数列的通项公式化简已知的两等式得到两个关系式,然后把两关系式相减即可求出等差d,把公差d的值代入到两关系式中任意一个即可求出首项,然后根据等差和首项即可求出S9的值.
解答:解:由已知可知:a1+a2+a3=3a1+3d=4①,a7+a8+a9=3a1+21d=16②,
②-①得:18d=12,解得:d=
2
3
,把d=
2
3
代入①得:a1=
2
3

则S9=9×
2
3
+
9×8
2
×
2
3
=30.
故选B
点评:此题考查学生掌握等差数列的性质,灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn.若S2k=72,且ak+1=18-ak,则正整数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为TnTn+
an+12n
(λ为常数).令cn=b2n(n∈N)求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项之和为Sn满足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,已知(a4-1)3+2012(a4-1)=1(a2009-1)3+2012(a2009-1)=-1,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S9=81,S6=36,则S3=(  )

查看答案和解析>>

同步练习册答案