解:(1)h(x)=f(x+1)﹣g'(x)=ln(x+1)﹣x+2,x>﹣1,
所以 h'(x)=
﹣1=
.
当﹣1<x<0时,h'(x)>0;
当x>0时,h'(x)<0.
因此,h'(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减.
因此,当x=0时h(x)取得最大值h(0)=2;
(2)证明:当0<b<a时,﹣1<
<0,
由(1)知:当﹣1<x<0时,h(x)<2,即ln(x+1)<x.
因此,有f(a+b)﹣f(2a)=ln
=ln(1+
)<
.
(3)不等式k(x﹣1)<xf(x)+3g'(x)+4化为k<
+2
所以k<
+2对任意x>1恒成立.
令g(x)=
+2,则g'(x)=
,
令h(x)=x﹣lnx﹣2(x>1),则 h'(x)=1﹣
=
>0,
所以函数h(x)在(1,+∞)上单调递增.
因为h(3)=1﹣ln3<0,h(4)=2﹣2ln2>0,
所以方程h(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4).
当1<x<x0时,h(x)<0,即g'(x)<0,
当x>x0时,h(x)>0,即g'(x)>0,
所以函数g(x)=
+2在(1,x0)上单调递减,在(x0,+∞)上单调递增.
所以[g(x)]min=g(x0)=
+2=
+2=x0+2∈(5,6).
所以k<[g(x)]min=x0+2∈(5,6).
k的最大值是5.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2(x-1) |
| x+1 |
| x1+x2 |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 |
| f(n) |
查看答案和解析>>
科目:高中数学 来源: 题型:
| ||
| a |
| ||
| x |
| 6 |
| 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com