精英家教网 > 高中数学 > 题目详情
(2012•辽宁模拟)如图,已知抛物线C:y2=2px和⊙M:(x-4)2+y2=1,过抛物线C上一点H(x0,y0)(y0≥1)作两条直线与⊙M相切于A、两点,分别交抛物线为E、F两点,圆心点M到抛物线准线的距离为
174

(Ⅰ)求抛物线C的方程;
(Ⅱ)当∠AHB的角平分线垂直x轴时,求直线EF的斜率;
(Ⅲ)若直线AB在y轴上的截距为t,求t的最小值.
分析:(Ⅰ)利用点M到抛物线准线的距离为
17
4
,可得p=
1
2
,从而可求抛物线C的方程;
(Ⅱ)法一:根据当∠AHB的角平分线垂直x轴时,点H(4,2),可得kHE=-kHF,设E(x1,y1),F(x2,y2),可得y1+y2=-2yH=-4,从而可求直线EF的斜率;
法二:求得直线HA的方程为y=
3
x-4
3
+2
,与抛物线方程联立,求出E,F的坐标,从而可求直线EF的斜率;
(Ⅲ)法一:设A(x1,y1),B(x2,y2),求出直线HA的方程,直线HB的方程,从而可得直线AB的方程,令x=0,可得t=4y0-
15
y0
(y0≥1)
,再利用导数法,即可求得t的最小值.
法二:求以H为圆心,HA为半径的圆方程,⊙M方程,两方程相减,可得直线AB的方程,当x=0时,直线AB在y轴上的截距t=4m-
15
m
(m≥1),再利用导数法,即可求得t的最小值.
解答:解:(Ⅰ)∵点M到抛物线准线的距离为4+
p
2
=
17
4

p=
1
2
,∴抛物线C的方程为y2=x.(2分)
(Ⅱ)法一:∵当∠AHB的角平分线垂直x轴时,点H(4,2),∴kHE=-kHF
设E(x1,y1),F(x2,y2),∴
yH-y1
xH-x1
=-
yH-y2
xH-x2
,∴
yH-y1
y
2
H
-
y
2
1
=-
yH-y2
y
2
H
-
y
2
2

∴y1+y2=-2yH=-4.(5分)
kEF=
y2-y1
x2-x1
=
y2-y1
y
2
2
-
y
2
1
=
1
y2+y1
=-
1
4
.(7分)
法二:∵当∠AHB的角平分线垂直x轴时,点H(4,2),∴∠AHB=60°,可得kHA=
3
kHB=-
3

∴直线HA的方程为y=
3
x-4
3
+2

联立方程组
y=
3
x-4
3
+2
y2=x
,得
3
y2-y-4
3
+2=0

yE+2=
3
3

yE=
3
-6
3
xE=
13-4
3
3
.(5分)
同理可得yF=
-
3
-6
3
xF=
13+4
3
3
,∴kEF=-
1
4
.(7分)
(Ⅲ)法一:设A(x1,y1),B(x2,y2),∵kMA=
y1
x1-4
,∴kHA=
4-x1
y1

∴直线HA的方程为(4-x1)x-y1y+4x1-15=0,
同理,直线HB的方程为(4-x2)x-y2y+4x2-15=0,
(4-x1)y02-y1y0+4x1-15=0(4-x2)y02-y2y0+4x2-15=0,(9分)
∴直线AB的方程为(4-x)y02-yy0+4x-15=0
令x=0,可得t=4y0-
15
y0
(y0≥1)

t′=4+
15
y
2
0
>0
,∴t关于y0的函数在[1,+∞)上单调递增,
∴当y0=1时,tmin=-11.(12分)
法二:设点H(m2,m)(m≥1),HM2=m4-7m2+16,HA2=m4-7m2+15.
以H为圆心,HA为半径的圆方程为(x-m22+(y-m)2=m4-7m2+15,①
⊙M方程:(x-4)2+y2=1.②
①-②得:直线AB的方程为(2x-m2-4)(4-m2)-(2y-m)m=m4-7m2+14.(9分)
当x=0时,直线AB在y轴上的截距t=4m-
15
m
(m≥1),
t′=4+
15
m2
>0
,∴t关于m的函数在[1,+∞)上单调递增,
∴当m=1时,tmin=-11.(12分)
点评:本题以抛物线与圆的方程为载体,考查抛物线的标准方程,考查直线方程,同时考查利用导数法解决函数的最值问题,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•辽宁模拟)已知函数f(x)=ax-1-lnx(a∈R).
(Ⅰ)讨论函数f(x)在定义域内的极值点的个数;
(Ⅱ)已知函数f(x)在x=1处取得极值,且对?x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁模拟)若利用计算机在区间(0,1)上产生两个不等的随机数a和b,则方程x=2
2a
-
2b
x
有不等实数根的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁模拟)选修4-4:坐标系与参数方程
已知极坐标的极点在平面直角坐标系的原点O处,极轴与x轴的正半轴重合,且长度单位相同.直线l的极坐标方程为:ρ=
10
2
sin(θ-
π
4
)
,点P(2cosα,2sinα+2),参数α∈[0,2π].
(Ⅰ)求点P轨迹的直角坐标方程;
(Ⅱ)求点P到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁模拟)选修4-1:几何证明选讲
已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.
(Ⅰ)求证:AC平分∠BAD;
(Ⅱ)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁模拟)设数列{an}的前n项和为Sn,已知数列{Sn}是首项和公比都是3的等比数列,则{an}的通项公式an=
3,(n=1)
2•3n-1.(n≥2)
3,(n=1)
2•3n-1.(n≥2)

查看答案和解析>>

同步练习册答案