【题目】已知椭圆
的左焦点为F,点
,过M的直线与椭圆E交于A,B两点,线段AB中点为C,设椭圆E在A,B两点处的切线相交于点P,O为坐标原点.
![]()
(1)证明:O、C、P三点共线;
(2)已知
是抛物线
的弦,所在直线过该抛物线的准线与y轴的交点,
是弦
在两端点处的切线的交点,小明同学猜想:
在定直线上.你认为小明猜想合理吗?若合理,请写出
所在直线方程;若不合理,请说明理由.
【答案】(1)证明见解析; (2)合理,
在直线
上
【解析】
(1)设出直线
的方程,联立椭圆方程,根据韦达定理,利用导数求得任一点处切线的斜率,从而解得切线方程
,得到点
的坐标,由
即可容易判断;
(2)联立
的方程和抛物线方程,利用导数求得
处的切线方程,结合已知条件,即可容易证明.
(1)设
,
,直线AB的方程为
.
联立
,消去x整理得
,
由
﹐得
或![]()
,
由椭圆对称性,设![]()
是椭圆
在x轴上方的任意一点,
则由
,
得
﹐
所以在
处的切线斜率为
,
故在
处切线方程为
,
结合
化简得
切线PA方程为:
,同理
,
联立两切线方程消去y得
,
联立
解得
,
由AB中点
及
可得
,
、C、P三点共线.
(2)合理,
在直线
上.
证明如下:设
,
,
直线
斜率一定存在,![]()
联立
消去y得
,![]()
,
由
得
,
.
抛物线
在
处的切线方程为
,
同理在
处的切线方程为
联立
解得
,
故
在直线
上.
科目:高中数学 来源: 题型:
【题目】已知曲线
的参数方程为:
(
为参数),
的参数方程为:
(
为参数).
(1)化
、
的参数方程为普通方程,并说明它们分别表示什么曲线;
(2)若直线
的极坐标方程为:
,曲线
上的点
对应的参数
,曲线
上的点
对应的参数
,求
的中点
到直线
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求直线
的普通方程和曲线
的直角坐标方程;
(Ⅱ)设
为曲线
上的点,
,垂足为
,若
的最小值为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若函数
在
,
上单调递增,求实数
的取值范围;
(2)若函数
在
处的切线平行于
轴,是否存在整数
,使不等式
在
时恒成立?若存在,求出
的最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
和
轴上的定点
,过抛物线焦点作一条直线交
于
、
两点,连接
并延长,交
于
、
两点.
(1)求证:直线
过定点;
(2)求直线
与直线
最大夹角为
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|3x+2|.
(1)解不等式f(x)<4-|x-1|;
(2)已知m+n=1(m,n>0),若|x-a|-f(x)≤
(a>0)恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,AB=2,∠BAD=60°,M是PD的中点.
(Ⅰ)求证:OM∥平面PAB;
(Ⅱ)平面PBD⊥平面PAC;
(Ⅲ)当三棱锥C﹣PBD的体积等于
时,求PA的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
垂直于
所在的平面
,
为
的直径,
是弧
上的一个动点(不与端点
重合),
为
上一点,且
是线段
上的一个动点(不与端点
重合).
![]()
(1)求证:
平面
;
(2)若
是弧
的中点,
是锐角,且三棱锥
的体积为
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com