精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+c.
(1)设f(x)在[-2,2]上的最大值、最小值分别是M、m,集合{x|f(x)=x}={1},且a≥1,记h(a)=M+m,求h(d)的最小值.
(2)当a=2,c=-1时,
①设A=[-1,1],不等式f(x)≤0的解集为C,且C⊆A,求实数b的取值范围;
②设g(x)=|x-t|-x2-bx(t∈R),求f(x)+g(x)的最小值.
(1)由题意可得方程ax2+bx+c=x 存在两等根x1=x2=1,可得 b=1-2a,c=a.
∴f(x)=a (x-
2a-1
2a
)
2
+1-
1
4a
,它的对称轴为 x=1-
1
2a
∈[
1
2
,1].
∵x∈[-2,2],∴h(a)=M+m=f(-2)+f(1-
1
2a
)=9a-
1
4a
-1,
∵a≥1,故函数 h(a)为增函数,
∴函数 h(a)的最小值为 h(1)=
31
4

(2)当a=2,c=-1时,f(x)=2x2+bx-1,①由不等式f(x)≤0的解集为C,且C⊆A,可得
f(-1)≥0
f(1)≥0
-1≤-
b
4
≤1
,解得 b∈[-1,1].
②f(x)+g(x)=x2+|x-t|-1=
(x+
1
2
)
2
-t-
5
4
 , x≥t
(x-
1
2
)
2
+t-
5
4
 , x<t

当 t<-
1
2
时,最小值为-t-
5
4

当-
1
2
≤t≤
1
2
 时,最小值为 t2-1,
当t>
1
2
 时,最小值为t-
5
4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案